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Abstract. When argumentation is conceived as a kind of process, typically a di-
alogue, for reasoning rationally with limited resources under conditions of in-
complete and inconsistent information, arguers need heuristics for controlling the
search for arguments to put foward, so as to move from stage to stage in the process
in an efficient, goal-directed way. For this purpose, we have developed a formal
model of abduction in argument evalution structures. An argument evaluation struc-
ture consists of the arguments of a stage, assumptions about audience and an assign-
ment of proof standards to issues. A derivability relation is defined over argument
evaluation structures for the literals ‘in’ a stage. Literals which are not derivable in
a stage are ‘out’. Abduction is defined as a relation between an argument evalua-
tion structure and sets of literals, called ‘positions’, which, when the assumptions
are revised to include the literals of the position, would make a goal literal in or
out, depending of the standpoint of the agent. Soundness, minimiality, consistency
and completeness properties of the abduction relation are proven. A heuristic cost
function estimating how difficult it is to find or construct arguments pro a literal in
the domain can be used to order positions and literals within positions. We compare
our work to abduction in propositional logic, in particular the Assumption-Based
Truth Maintenance System (ATMS).
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1. Introduction

We view argumentation as a kind of process for reasoning rationally about problems
which are not well-formed or semi-decidable with incomplete or inconsistent informa-
tion and limited computational resources [1,2]. Persuasion dialogues [3] between a pro-
ponent and respondent about some claim or thesis are the prototypical type of argumen-
tation process, but argumentation processes in our conception are not restricted to dia-
logues, in their usual sense as conversations between two or more persons.3
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3Dialogues in philosophy and AI are often generalized to cover as well the reasoning processes of single

agents, switching between pro and con roles. Presumably most if not all argumentation processes can be viewed
as dialogues in this generalized sense.



Figure 1 shows a simple argumentation process, where an agent is preparing his
case, to be presented later to the audience, by constructing arguments from information
found using some information service.
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Figure 1. A Simple Argumentation Process

Arguments are put forward, recorded and evaluated in an argument evaluation struc-
ture, taking into consideration applicable proof standards [4,5,6] and assumptions about
the audience. The agent needs to formulate some kind of impression of his audience,
in order to avoid expending resources trying to prove propositions which the audience
would accept without proof and also to select arguments which are likely to be persua-
sive.

Each time through the loop, if resources remain, the agent will use the argument
evaluation structure to abduce alternative positions, where, similar to [7], a position is
a set of propositions which, if added to the assumptions, would make the main issue
provable (in) or not provable (out), depending of the standpoint of the agent. From these
alternative positions, a subgoal is then selected to work on next, taking into consideration
the estimated cost of proving each proposition of a position.

Our focus here is on the task of selecting the next goal to work on. This is an es-
sential, central task of all argumentation processes. An agent cannot argue well without
some means of efficiently choosing subgoals which are likely to lead to arguments which



are effective for helping to resolve the main issue in a favorable way, given the agent’s
standpoint.

For the purpose of supporting goal selection, this paper presents a formal model of
abduction in argument evaluation structures. Abduction has several meanings in logic. It
can mean a method for inferring explanations of observations, but we are using the term
by analogy to a more formal meaning, where abduction is one of three kinds of inference
relations, together with deduction and induction.

The rest of the paper is organized as follows. The next section presents the formal
model. This is followed with a section presenting an example illustrating the model. The
paper closes with a discussion of related and possible future work.

2. The Formal Model

The model of goal selection builds on our prior work on argument evaluation structures
[5,6]. To make this paper self-contained, we begin by summarizing this prior work.

We begin with the concept of an argument. Informally, an argument is a structure
linking a set of premises to a conclusion. Some of the critical questions of the argumen-
tation scheme used to construct the argument are modeled as exceptions of the argument.

Definition 1 (argument) Let L be a propositional language. An argument is a tuple
〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L are its exceptions and c ∈ L is its
conclusion. For simplicity, c and all members of P and E must be literals, i.e. either
an atomic proposition or a negated atomic proposition. Let p be a literal. If p is c, then
the argument is an argument pro p. If p is the complement of c, then the argument is an
argument con p.

Arguments do not need to be deductively valid. For example, premises needed to
make the argument deductively valid can be left implicit. (Such arguments are called
‘enthymemes’.) An argument is dialectically valid only if it furthers the goals of the
argumentation process [3]. One way to assess the dialectically validity of an argument
is to check whether it is an instance of an argumentation scheme which is accepted by
the procedural rules (protocol) of the particular argumentation process in the problem
domain.

Argumentation is viewed as a process. To fully model different kinds of proof bur-
dens, it is useful to divide the process into three phases, an open, argumentation and clos-
ing phase and to distinguish between claimed and questioned propositions. But for our
purposes here these details are not necessary.

Definition 2 (argumentation process) An argumentation process is a sequence of
stages where each stage is a set of arguments. In every chain of arguments, a1, . . . an,
constructable from the arguments in a stage by linking the conclusion of an argument to
a premise or exception of another argument, a conclusion of an argument ai may not be
a premise or exception of an argument aj , if j < i. A set of arguments which violates
this condition is said to contain a cycle and a set of arguments which complies with this
condition is called cycle-free.



Notice that arguments both pro and con some proposition can be included in the
arguments of a stage without causing a cycle.

Next we need a structure for evaluating arguments, to assess the acceptability of
propositions at issue. As in value-based argumentation frameworks [8,9] arguments are
evaluated with respect to assumptions about an audience.

Definition 3 (audience) An audience is a structure 〈Φ, f〉, where Φ ⊂ L is a consistent
set of literals assumed to be acceptable by the audience and f is a partial function map-
ping arguments to real numbers in the range 0.0 . . . 1.0, representing the relative weights
assumed to be assigned by the audience to the arguments.

An argument evaluation structure associates an audience with a stage of process and
assigns proof standards to issues, providing a basis for evaluating the acceptability of
propositions to this audience.

Definition 4 (argument evaluation structure) An argument evaluation structure is a
tuple 〈Γ,A, g〉, where Γ is a stage in a argumentation process, A is an audience and
g is a total function mapping propositions in L to their applicable proof standards in
the process. A proof standard is a function mapping tuples of the form 〈p,Γ,A〉 to the
Boolean values true and false, where p is a literal in L.

Given an argument evaluation structure, the acceptability of a proposition is defined
by its proof standard.

Definition 5 (acceptability) Let S = 〈Γ,A, g〉 be an argument evaluation structure,
where A = 〈Φ, f〉. A literal p is acceptable in S if and only if g(p)(p,Γ,A) is true.

Derivability in an argument evaluation structure can then be defined as a kind of
nonmonotonic inference relation as follows:

Definition 6 (derivability) Let S = 〈Γ,A, g〉 be an argument evaluation structure,
where A = 〈Φ, f〉. A literal p is in S, denoted (Γ,Φ) `f,g p, if and only if

• p ∈ Φ or
• (¬p /∈ Φ and p is acceptable in S)

Otherwise p is out, denoted (Γ,Φ) 0f,g p.

Obviously much of the work of argument evaluation has been delegated to the proof
standards. All the proof standards we have defined make use of the concept of argument
applicability, so let us define this concept first.

Definition 7 (argument applicability) Let S = 〈Γ,A, g〉 be an argument evaluation
structure. An argument 〈P,E, c〉 is applicable in this argument evaluation structure if
and only if

• the argument is a member of Γ, the arguments of the stage
• every proposition p ∈ P is in
• every proposition p ∈ E is out



In [6] we defined five proof standards, most of them modeling legal proof standards:
1) scintilla of the evidence, 2) preponderance of the evidence, 3) clear and convincing
evidence, 4) beyond a reasonable doubt and 5) dialectical validty. To illustrate proof
standards we present here the definition of two of these standards, dialectical validity and
preponderance.

Definition 8 (dialectical validity) Let 〈Γ,A, g〉 be an argument evaluation structure
and let p be a literal in L. dv(p,Γ,A) = true if and only if there is at least one applicable
argument pro p in Γ and no applicable argument con p in Γ.

Definition 9 (preponderance of the evidence) Let 〈Γ,A, g〉 be an argument evaluation
structure and let p be a literal in L. pe(p,Γ,A) = true if and only if

• there is at least one applicable argument pro p in Γ and
• the maximum weight assigned by the audienceA to the applicable arguments pro
p is greater than the maximum weight of the applicable arguments con p.

Given these preliminaries we can now turn to our primary task, of defining abduc-
tion and computing goals. We begin by the defining the labels of literals and arguments
in an argument evaluation structure, where each label is a propositional formula. Each
literal has two labels. The labels express conditions which, if accepted by the audience,
would make the literal in or, respectively, out. Similarly, arguments also have two la-
bels, expressing conditions which, if accepted by the audience, would make the argument
applicable or, respectively, not applicable.

The base case in the definition of the labels of literals covers the case where the
literal is assumed to have been accepted or rejected by the audience. If however the literal
has not been assumed to have been accepted or rejected by the audience, then the label
is a function of the proof standard assigned to the literal.

Definition 10 (literal labels) Let S = 〈Γ,A, g〉 an argument evaluation structure with
A = 〈Φ, f〉. The in and out labels of a literal p are defined as:

• in-label(p,S) :=


> if p ∈ Φ
p if ¬p ∈ Φ
ps-in-label(p,S) otherwise

• out-label(p,S) :=


¬p if p ∈ Φ
> if ¬p ∈ Φ
ps-out-label(p,S) otherwise

where the helping functions ps-in-label and ps-out-label are defined as follows:

• ps-in-label(p,S) :=

{
dv-in-label(p,S) if g(p) = dv
ba-in-label(p,S) if g(p) = pe

• ps-out-label(p,S) :=

{
dv-out-label(p,S) if g(p) = dv
ba-out-label(p,S) if g(p) = pe



To save space, the definitions of ps-in-label and ps-out-label handle only the two
proof standards defined above, preponderance of evidence and dialectical validity, but
they can be extended in a straightforward manner to handle other proof standards.

Before defining the labeling functions for these two specific proof standards we first
define argument labels. Using the definition of argument applicability, the in-label of
arguments is the conjunction of all in-labels of its premises and of all the out-labels of its
exceptions. The out-label of an argument is simply the negation of its in-label, where the
negation of a literal’s in-label is the literal’s out-label and vice versa, not the negation of
the literal represented by the in-label.

Definition 11 (argument labels) Let S = 〈Γ,A, g〉 be an argument evaluation structure
and a = 〈P,E, c〉 ∈ Γ be an argument. We define the argument labels for a as follows:

• in-label(a,S) :=
∧

p∈P

in-label(p,S) ∧
∧

e∈E

out-label(e,S)

• out-label(a,S) :=
∨

p∈P

out-label(p,S) ∨
∨

e∈E

in-label(e,S)

Next, we present the labeling functions for the two proof standards, using the ar-
gument labels, beginning with dialectical validity. The in-label for a literal assigned the
dialectical validity standard is defined as the conjunction of the out-labels of all its con-
arguments and the disjunction of the in-labels of all its pro-arguments. We also add the
literal itself as a disjunct to the label in order to later enable goals to be derived for all
literal nodes in an argument graph and not just leaves. Notice that the dialectical validity
out-label is almost the negation of its in-label.

Definition 12 (dialectical validity label) Let S = 〈Γ,A, g〉 be an argument evaluation
structure and p ∈ L a literal. The dialectical validity label for p in S is defined as
follows:

• dv-in-label(p,S) := (
∨

a∈Pro
in-label(a,S) ∧

∧
a∈Con

out-label(a,S)) ∨ p

• dv-out-label(p,S) :=
∧

a∈Pro
out-label(a,S) ∨

∨
a∈Con

in-label(a,S) ∨ ¬p

where Pro and Con denote the sets of pro- and con-arguments for p in Γ.

Coming to the second proof standard, preponderance of the evidence, we must con-
sider the weights of the arguments. The label of a literal assigned this standard is the dis-
junction of the in-labels of all its pro-arguments (assuring the existence of an applicable
pro-argument) combined with the conjunction of the out-labels of all its con-arguments
with greater or equal weight (assuring all applicable con-arguments have less weight).
We again add the literal itself to the label. For the out-label we again turn the tables and
require that either every pro-argument be not applicable or that there exist an applicable
con-argument of greater or equal weight.

Definition 13 (preponderance label) Let S = 〈Γ,A, g〉 be an argument evaluation
structure and p ∈ L a literal. The preponderance label for p in S is defined as follows:

• ba-in-label(p,S) := (
∨

a∈Pro
[in-label(a,S) ∧

∧
b∈Con,

f(a)≤f(b)

out-label(b,S)]) ∨ p



• ba-out-label(p,S) := (
∧

a∈Pro
[out-label(a,S) ∨

∨
b∈Con,

f(a)≤f(b)

in-label(b,S)]) ∨ ¬p

where Pro and Con denote the sets of pro and con arguments for p in Γ.

It is easy to see that the out-label of a literal is in general not the same as the in-label
of the literal’s complement. To make this clear, consider a small example of an argument
evaluation structure S with just one literal q, no arguments and no assumptions for the
audience. No matter what proof standard is assigned to q we obtain out-label(q,S) =
>∨¬q for the out-label whereas the in-label for the complement of q is in-label(¬q,S) =
¬q.

Labels for further proof standards can be defined similarly.
A label of a statement is transformed into a set of positions by first reducing the label

to minimal disjunctive normal form and then interpreting the clauses of the formula as
alternative positions consisting of the corresponding literals.

Definition 14 (position sets) Let l be a label of a literal p in an argument evaluation
structure S. Let λl = C1 ∨ . . . ∨ Cn be a formula equivalent to l in minimal disjunctive
normal form. We define the position set of the label, denoted ps(l), as follows: ps(l) =
{glCi

| 1 ≤ i ≤ n} where glCi
= {Lij | 1 ≤ j ≤ m} for Ci = Li1 ∧ . . . ∧ Lim

Abduction is defined as a relation between an argument evaluation structure and a
position, which holds if adding the literals of the position to the assumptions about the
audience would make a goal literal in or out, depending of the standpoint of the agent.

Definition 15 (abduction) Let S be an argument evaluation structure and let p ∈ L be
a literal. We define two abductive inference relations, in and out as follows.

• (p,S) in ∆ if and only if ∆ ∈ ps(in-label(p,S))
• (p,S) out ∆ if and only if ∆ ∈ ps(out-label(p,S))

We have proved that these abduction relations are sound, minimal, consistent and
complete with respect to the underlying derivability inference relation. There is space
only to present sketches of the proofs of these properties here. The full proofs are avail-
able in a technical report [10].

First we need to take care of a technical issue, namely aggregating two positions in
such a way that the literals of one position replace the complementary literals of the other
position. We need this operator to revise the assumptions the agent makes about literals
accepted by the audience after persuading the audience to accept a position.

Definition 16 (assumption revision) Let Φ be the set of literals assumed to be accepted
by the audience and let ∆ be a position which the agent wants to persuade the audience
to accept. The revised assumptions about the audience are Φ ∪--- ∆ = {L | L ∈ ∆∨(L ∈
Φ ∧ ¬L /∈ ∆)}

By soundness, we mean that revising the assumptions about the audience to include
the literals of a position makes the issue in or out in the resulting argument evaluation
structure, depending on whether the agent is interested in proving or disproving the literal
at issue. This is the most important property, because it assures the agent that persuading
the audience to accept the literals of a position should be effective in persuading the
audience to accept the agent’s standpoint with respect to the literal at issue.



Theorem 1 (soundness) Let S = 〈Γ,A, g〉 be an argument evaluation structure with
an audience A = 〈Φ, f〉. Let p ∈ L be a literal and ∆ be a position. The following
statements hold:

• (p,S) in ∆⇒ (Γ,Φ ∪--- ∆) `f,g p
• (p,S) out ∆⇒ (Γ,Φ ∪--- ∆) 0f,g p

The proof is straight-forward because we defined the statement and argument la-
bels on the basis of the acceptability and applicability definitions. Assumption revision
preserves the consistency of the assumptions of the audience.

Theorem 2 (minimality) Let S = 〈Γ,A, g〉 be an argument evaluation structure and
p ∈ L be a literal. For all ∆1 and ∆2, if (p,S) in ∆1 and (p,S) in ∆2 or if
(p,S) out ∆1 and (p,S) out ∆2, then ∆1 6⊂ ∆2.

Minimality follows from the use of minimal disjunctive normal form to transform
labels into position sets.

Theorem 3 (consistency) Let S = 〈Γ,A, g〉 be an argument evaluation structure, p ∈ L
a literal and ∆ a position. If (p,S) in ∆ or (p,S) out ∆ then ∆ is a consistent set of
literals in classical propositional logic.

Consistency follows from the use of minimal disjunctive normal form to transform
the label of an issue into a position set, since the literal of the issue is added as a disjunct
of the formula.

Finally, completeness guarantees that all possible positions enabling the agent to
prove or disprove the literal at issue are abduced.

Theorem 4 (completeness) Let S = 〈Γ,A, g〉 be an argument evaluation structure with
an audience A = 〈Φ, f〉. Let p ∈ L be a literal and ∆ a position. The following state-
ments hold:

• (Γ,Φ ∪--- ∆) `f,g p⇒ ∃∆′ ⊆ ∆.(p,S) in ∆′

• (Γ,Φ ∪--- ∆) 0f,g p⇒ ∃∆′ ⊆ ∆.(p,S) out ∆′

The proof of completeness concentrates on the definition of literal labels, in particu-
lar its use of specific labels for each proof standard, to show that all sets of assumptions
that make a literal acceptable (or not acceptable) are covered by its labels.

Having defined positions, we can heuristically select a subset of the positions, as part
of a reasoning strategy, using a total order on positions. Such an order could be defined,
e.g., using an estimate of the cost of proving each literal. This would enable the agent to
select one of the cheapest positions to work on next.

Definition 17 (preferred positions) Let S be an argument evaluation structure, p ∈ L
a literal at issue, and ≤ a total order on positions. A position ∆ for proving p, where
(p,S) in ∆, is a preferred position if and only if ∀∆′.(p,S) in ∆′ ⇒ ∆ ≤ ∆′.

Similarly, if ∆ is a position for disproving p, where (p,S) out ∆, then ∆ is a
preferred position if and only if ∀∆′.(p,S) out ∆′ ⇒ ∆ ≤ ∆′.



Finally, we define two relevance properties of arguments. Intuitively, an argument is
relevant for a proving a goal literal, if its conclusion is a member of a position for this
literal. The stronger relevance property requires in addition that the conclusion of the
argument be a member of a preferred position.

Definition 18 (relevance) Let a = 〈P,E, c〉 an argument and S be an argument evalu-
ation structure and p ∈ L be an issue.

• The argument a is weakly relevant in S if and only if ∃∆.[(p,S) in ∆ ∨
(p,S) out ∆] ∧ c ∈ ∆

• The argument a is strongly relevant in S if and only if c is a member of a preferred
position for p in S.

This notion of relevance is analogous to Sperber and Wilson’s [11], who define
relevance by two conditions. Weak relevance is similar to the first condition, requiring
“large effects” on the “context”. The context is here the argument evaluation structure;
the large effect of proving a weakly relevant statement is to bring the agent “one step
closer” to proving or disproving the main issue. Strongly relevance is analogous to the
second condition of “small effort” because we take the total order on the positions into
account to select the “cheapest” position.

3. Example

Figure 2 shows a small argument graph for which it is already hard to see what goal
to choose next. In the argument evaluation structure S = 〈Γ,A, g〉 we have the stage
Γ = {a1, a2, a3, a4, a5} and the audience A = 〈Φ, f〉, where Φ = {¬q, s,¬t,¬v, w}
and the weights assigned by f are as shown in the figure. The proof standard assigned
by g is preponderance of the evidence for all literals. The issue is p.

In the figure, literals are shown in boxes and arguments in circles. The weights as-
signed by the audience to arguments are shown above the circles. Pro arguments are dis-
played with filled arrowheads; con arguments with open arrowheads. Premises are vi-
sualized by a solid line linking a proposition to an argument; Exceptions are visualized
with dashed lines. By convention, only positive literals are displayed in boxes. Nega-
tive conclusions are visualized using con arguments. Negated premises are shown with
a cross mark on the link between the premise and the argument, but there is no example
in this figure. Literals assumed to have been accepted by the audience are shown with
a check mark in the lower left corner of the box for the literal; literals assumed to have
been rejected by the audience are shown with an X mark. (Acceptance of a literal P
implies rejection of ¬P and vice versa.)

Computing the labels for p and its complement we obtain:

• in-label(p,S) = (> ∧ q ∧ (> ∨ v ∨ t ∨ ¬r)) ∨ p ≡ q ∨ p
• out-label(p,S) = ¬s ∨ > ∨ (u ∧ > ∧ >) ∨ r ∨ ¬p ≡ >
• in-label(¬p,S) = (u ∧ > ∧ >) ∨ r ∨ ¬p ≡ u ∨ r ∨ ¬p
• out-label(¬p,S) = > ∨ v ∨ t ∨ ¬r ∨ p ≡ >

The four corresponding sets of positions are:

• {q} and {p} if the agent wants to prove p
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Figure 2. An example argument graph

• {} if the agent wants to disprove p.
• {u}, {r} and {¬p} if the agent wants to prove ¬p.
• {} if the agent wants to disprove ¬p.

So, if the agent is interested in disproving p or ¬p no further arguments should be
needed to persuade the audience, since neither literal currently satisfies its proof standard.
If however the agent wants to prove p, he can either try to construct another argument
pro p or arguments sufficient to make q acceptable to the audience. The agent need not be
concerned yet about rebutting the argument con p because it is not currently applicable.

4. Discussion

We have presented a model of abduction in an argument evaluation structure which en-
ables a principled method for selecting goals to work on in argumentation processes, to
help agents to construct arguments in an efficient, goal-directed way.

Again, we are using the term abduction by analogy to its formal meaning, as one of
three kinds of inference relations, together with deduction and induction, not as a method
for inferring causes of observations. The role of deduction is played by the derivability
relation in our system, which infers literals which ‘in’ an argument evaluation structure.
Induction in our system would be the inference of further arguments which would make
a goal statement in if the arguments are added to the stage of the argument evaluation
structure. Finally, abduction in this framework is the inference of literals which, if added
to the set of literals assumed to be accepted by the audience, would make a goal literal
derivable (in) in the argument evaluation structure.

This work was inspired by de Kleer’s Assumption-Based Truth Maintenance Sys-
tem (ATMS) [12,13] and its application to controlling problem-solvers [14]. Whereas
the ATMS performs abduction in a subset of classical propositional logic, our system
performs abduction in an argumentation evaluation structure, which is a kind of non-
monotonic inference relation. Junker showed how to use the ATMS for nonmonotonic
reasoning [15], but the semantics of his inference relation does not meet the requirements
we have identified for evaluating arguments, such as support for proof standards. Rather
than trying to develop a new argument evaluation structure which meets our requirements



on top of the ATMS, we have opted to develop a model of abduction sufficient for the
purpose of goal selection on top of our existing Carneades argument evaluation structure.

The definition of relevance presented here continues our prior work on modeling
issues [16,17,18], where issues are understood as relevant, contested statements. The de-
tails of these models vary considerably, as a consequence of their very different under-
lying formal models of argument. This line of work is not related to relevance logic,
which aims to weaken classical logic to avoid claimed paradoxes of material and strict
implication.

Assumption revision in our system is much simpler than general belief revision [19],
since all of the formulas in a set of assumptions have been restricted to literals.

In [20], decision theory was used to select arguments to put forward in a formal
argument game, making use of the expected utility of an argument, the probability of an
argument being successful and the costs of the argument. Although this work is quite dif-
ferent from ours, since our aim is to help agents to select goals to work on, by searching
for information which can be used to construct arguments about the goal, not to select
from amoung a fixed set of arguments, both have in common the goal of helping agents
with strategic issues when making moves in argumentation processes and both use cost
functions for this purpose. An issue for further research is whether expected utilities, as
well as costs, could be useful in our context.

Computational complexity issues may be interesting to investigate. The problem of
computing positions is presumably intractable, since it depends on the reduction of for-
mulas to their minimal disjunctive normal form, which is itself in general an intractable
problem. However it may be possible to reformulate our problem to make it less com-
plex, by using the structure of argument graphs to incrementally construct labels in min-
imal disjunctive normal form, rather than reducing them to this normal form after they
have been constructed.

The model of abduction presented here has been implemented in the latest version
of our Carneades4 argumentation software. Our next steps include the development of
pilot applications, as part of an effort to validate the model.
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