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Abstract. We describe a system for constructing, evaluating and visualising argu-
ments based on a theory of a legal domain, developed using the Angelic methodol-
ogy and the Carneades argumentation system. The visualisation can be used to ex-
plain particular cases and to refine and maintain the theory. A full implementation
of the well known US Trade Secrets Domain is used to illustrate the process.
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1. Introduction

Modelling reasoning with legal cases has been a central concern of AI and Law from
the very beginning. A good deal of the research has built on the pioneering work of
HYPO [1] and CATO [2]. Both of these addressed cases in US Trade Secrets law, which
is the domain which we will model in this paper. Over the years a series of stages in the
reasoning have been identified. The outcome is decided on the basis of the resolution of a
number of issues which set out what must be shown to establish a claim. The relationship
between the issues and the outcome can be expressed in a set of rules [3]. The issues are
resolved by weighing the reasons to resolve that issue for the plaintiff against the reasons
to resolve that issue for the defendant (e.g. [4]). These reasons are generally called factors
[2], and the preferences between them are (in common law domains) derived from the
decisions in previous, precedent, cases [5]. Often the set of factors describing the cases is
taken as given, but in some cases the ascription of factors is itself a matter of controversy
which must be resolved using precedents [6]. This structure lends itself to a hierarchical
representation, as in [2], with the outcome as the root, issues at the upper layers, abstract
factors in the middle layers and the base level factors as the leaves. This was extended
in [7] to allow the base level factors to be ascribed on the basis of a series of questions
answered by the user.

We will describe how to realise this approach to produce a system which will model
the domain theory and, when given a particular case, will produce an argument map
showing what was accepted and what was rejected in the case, and the arguments which
justified these positions. The argument map provides a visual explanation of the reason-
ing in the case, and where the result is unexpected provides a means to identify how to
perform the required corrective or adaptive maintenance of the theory.

Section 2 describes the methodology used to specify the domain theory and the sys-
tem used to make the theory executable. The transition from theory to implementation is



Table 1. Sample fragment of ADP for Trade Secret Misappropriation from [9]

Node Children Acceptance Conditions Justification

InfoValuable

F6p
F8p
F11d
F15p
InfoObtainable

REJECT IF F11d
ACCEPT IF F8p
ACCEPT IF F6p
ACCEPT IF F15p
REJECT IF InfoObtainable
ACCEPT

Silfen
Lewis
Mason
College
Restatement

InfoObtainable
F15p F16d
F20d F24d

REJECT IF F15p
ACCEPT IF F16d OR F24d OR F20d
REJECT

College
Ferranti

described in Section 3, while Section 4 discusses how the argument map can be used for
explanation and maintenance. Finally, Section 5 offers some discussion and concluding
remarks.

2. Background

2.1. The Angelic Methodology

The Angelic methodology, which is intended to produce a theory of a legal domain, was
introduced in [8] and has subsequently been refined in a series of projects with the law
firm Weightmans, including one described in [7]. The methodology has two outputs: the
Angelic Design Proforma (ADP), originally called ADF, and a set of questions required
to instantiate the ADP for a particular case.

The ADP comprises a table with four columns, in which the rows describe nodes in
a hierarchy. Example rows, taken from the full example given in [9], are given in Table 1.
The first column gives the ID of the node, which is intended to be an informative label
for the node. The second column gives the children of the node. The third column gives a
list of prioritised reasons to accept or reject the node. These reasons use only the children
of the node, and conclude with a default in case none of the reasons are satisfied. The
final column gives the source of these reasons and priorities between them which may be
a statute, a commentary, a precedent case or any other authoritative source.

The hierarchy is essentially the factor hierarchy of CATO [2], with the outcome
as the root, issues at the upper layers, abstract factors in the middle layers, and base
level factors as the leaves. The acceptance conditions are inspired by Abstract Dialectical
Frameworks [10]. The questions are intended to be posed to the user to give the leaf
nodes for a particular case. A leaf node may correspond to a single answer, or be derived
from one or more answers. An example question is discussed in Section 3.2.

2.2. Carneades

Carneades is both a formal model of structured argument and a software implementation
of this formal model. The original version of Carneades [11] provided a recursive proce-
dure to evaluate argument graphs, given a set of assumptions, to label the statement nodes
acceptable (In) or not acceptable (Out), and a way to visualise the output in “argument
maps” [12].



Here We are using the latest version of Carneades (4.3). The formal model of this
version was first presented in [13]. While it supports all the features of the earlier ver-
sion, the formal model is quite different. These differences were motivated by the desire
to handle not just attack relations among arguments, but also the balancing of competing
arguments, so as to better be able to support practical reasoning, where the pros and cons
of alternative options are weighed, including support for multi-criteria decision analy-
sis (MCDA). This also enables support for cumulative arguments, where the failure of a
premise can weaken an argument without defeating it completely. To achieve these goals,
the structure of argument graphs is now tripartite, with issue, statement and argument
nodes, and arguments have been extended with assignable and customisable weighing
functions [14]. When evaluating argument graphs, statements are now labelled either In,
Out or Undecided. The formalisation of issues assures that at most one option (position)
is In, serving as a constraint. The formal model now uses fixed-point semantics when
evaluating argument graphs, so as to be able to handle cycles in argument graphs. Just as
in abstract argumentation, various semantics can be applied, such as grounded, preferred
or complete semantics. The implementation, however, only supports grounded seman-
tics, which we have found to be sufficient for our legal application scenarios. As before,
the implementation provides a way to visualise argument graphs in argument maps.

Another new feature of this version of Carneades is its provision of a language and
inference engine for argumentation schemes. The language is based on Constraint Han-
dling Rules [15], a forwards-chaining rule system with a declarative, logical semantics.
In our implementation of Constraint Handling Rules [16], every time a rule is applied
(fired), an argument is generated as a side-effect. Given a set of argumentation schemes
(rules) and a set of assumptions, the rule engine is first applied to generate an argument
graph and then the argument graph is evaluated to label the statements in the graph.
Finally, as before, the resulting argument graph can be visualised in an argument map.

3. Realising an Angelic Theory in Carneades

To make the theory executable it is necessary to represent the acceptance conditions and
to get the assumptions from the user to instantiate a particular case. Because the under-
lying conceptions of Angelic and Carneades are very similar, both conceptualising the
reasoning as forming an argument graph, each acceptance condition can be represented
as a Carneades scheme. For moving from question responses to factors we distinguish
three kinds of factors, as discussed in Section 3.2.

3.1. Representing the acceptance conditions

Let us use the acceptance conditions for the InfoObtainable node of the trade secrets
ADP, shown in Table 2 below, as an example. Each node in the ADP has four properties
(columns in the table): a node name; the children of the node, used in the acceptance
conditions; a set of prioritised acceptance conditions; and the source of each condition,
the case or text on which it is based. As we will see, all of this information in an ADP
maps directly into Carneades argumentation schemes. The first acceptance condition can
be represented as follows:



id: ioCollege
meta:

source: College
weight:

constant: 1.0
conclusions: [notio]
premises: [f15p]

Here, ioCollege is an identifier for the scheme. The meta property can be used
to annotate the scheme with any desired information. Here we have used it to provide
the source of the scheme, the precedent case College Watercolor Group, Inc. v. William
H. Newbauer, Inc (College). The weight property is used only to order the schemes for
a node, so that its particular value has no other significance. Here we are using constant
weights for this purpose. Carneades also provides a variety of weighing functions which
can be used to compute weights. This feature will be demonstrated later, when show-
ing how factors with magnitude and dimensions can be handled. Using weights, argu-
ments can be partially ordered, useful for giving acceptance conditions with alternative
premises the same weight, as will be demonstrated below. The conclusion of this scheme,
notio, means that the information was not obtainable, and denotes the negation of io,
that the information was obtainable. The conclusion indicates whether the node in the
ADP being represented (InfoObtainable) is accepted or rejected. The premise of this ex-
ample scheme is f15p, denoting the F15p factor, Unique-Product, the body of the ac-
ceptance condition. Schemes may have multiple conclusions and premises, although this
feature is not demonstrated in this example.

To make io and notio conflict, so that at most one of them can be labelled In, an
issue scheme is added as follows:

issue_schemes:
io: [io, notio]

To complete this example, the schemes for the remaining acceptance conditions for
the InfoObtainable node of the ADP in Table 2 are shown in Figure 1:

The constant weights used in these schemes simply enforce the ordering of the ac-
ceptance conditions in the ADP. Any real numbers could have been used, so long as
they preserve the desired ordering. Notice that two schemes were needed to represent the
acceptance conditions for the Ferranti precedent, since it has two alternative premises,
F24d OR F20d. Both of these schemes were given the same weight, 0.9, since they share
the same position in the ordered list of acceptability conditions in the ADP.

Figure 1. Argumentation Schemes for Information Obtainable



3.2. Moving from facts to factors

Most factors are simply Boolean and depend on a single fact, and so they can be assumed
directly on the basis of particular question answers. Other factors require some judge-
ment to be ascribed to cases on the basis of the facts. These are the factors with magni-
tude [17]. Two types of such factors are used: those derived from a single dimension and
which apply a threshold to determine whether the factor applies and those (e.g. Compet-
itiveAdvantage in CATO) ascribed on the basis of a weighted sum of two dimensions.

We illustrate this using the question relating to disclosures.

Q3 Was the Information disclosed (Check all that apply)
(a) In negotiations with the Defendant?
(b) To employees?
(c) To sub-contractors?
(d) To customers?
(e) To the public?
(f) Restrictions were placed on the disclosures
(g) The information was not disclosed

Answers (a) and (f) lead directly to factors F1d and F12p respectively, while (g)
leads to no factor. Answers (b)-(e) represent the four points on the dimension leading to
the ascription of F10p (InfoNotDisclosed) and F10d (InfoDisclosedToOutsiders). Which
factor applies depends on where the threshold is drawn, in the light of precedents and
other domain knowledge.

3.2.1. Thresholds

In the trade secrets domain, answers (b)-(e) to the question about whether information
has been disclosed to outsiders form a dimension, which can be satisfied to a greater or
lesser extent. Let us identify the following points along the disclosure dimension, based
on to whom the information has been disclosed: employees, subcontractors, customers
and the public. These values will need to be mapped to factors, to show which party is
favoured on the dimension. Where the line is drawn is established in precedents. Based
on an analysis of the cases, we want to map disclosures to employees and subcontractors
to the factor F10p (InfoNotDisclosed) but map disclosure to customers and the public to
F10d (InfoDisclosedToOutsiders), where F10p and F10d are alternative positions of an
issue, so that at most one of these factors may be In. Effectively, the dimension will be
partitioned with a threshold between the subcontractors and customers points. Moreover,
we want to use argument weights to preserve the information about the relative position
of the disclosure along the dimension. So that, for example, a disclosure to the public is
a stronger argument for F10d than a disclosure to customers. And, conversely, so that a
disclosure to employees is a stronger argument for F10p than a disclosure to subcontrac-
tors. One way to achieve these goals, using the multi-criteria decisions analysis (MCDA)
weighing function provided by Carneades is shown in Figure 2.

This use of the MCDA weighing function does not illustrate its full capabilities,
since there is only one dimension, “disclosed”, where typically MCDA will be used to
combine multiple dimensions using a weighted sum. Notice that the permitted values
for the disclosed dimension (property) differ between these two schemes. The customers
and public values are in the first scheme, and the employees and subcontractors values
are in the second scheme. Alternatively, one could list all the values along the disclosure



Figure 2. Argumentation Schemes for Discloses To Outsiders

dimension in both schemes, but assign the weight 0.0 to the other values. Notice also that
the argument weights do not increase from the beginning to the end of the dimension,
but rather increase from the threshold in the middle out to the points on either end of
the dimension. Finally, notice that the disclosed property declares a binary predicate,
disclosed/2. Although not needed for this application, this feature is used when
addressing practical reasoning. In the next section, we make fuller use of the expressivity
of the MCDA weighing function to represent the mapping of two dimensions to a factor.

3.2.2. Weighted Sums

In the trade secrets domain, whether or not the defendant has obtained a competitive ad-
vantage due to acquiring knowledge of the trade secret is a function of two dimensions,
the costs saved and the time saved by the defendant. Fewer time savings can be com-
pensated by greater cost savings, and vice versa. If both time and cost savings have been
substantial, the argument for having obtained a competitive advantage will be greatest.

Here we demonstrate how to map several dimensions (time and cost savings) to
an abstract factor, (F9d, NoCompetitiveAdvantage) using a Carneades scheme with an
MCDA weighing function shown in Figure 3.

The weight of the argument is computed by a weighted sum of the values for each
dimension. The relative weight of each dimension is given with a “factor”. In this exam-
ple, time saved is given twice the weight of costs saved. Any integer or real number may
be assigned as a weight. The weighted sum is determined by first computing the relative
portion of each factor compared to the sum of the factors for all the dimensions. Thus, in
this example, time gets 2/3 of the weight and costs 1/3.

The second scheme here, with the id caThreshold, sets the threshold weight
which an argument for F9d (NoCompetitiveAdvantage) must have in order to succeed.
We have set the threshold at 0.5, meaning that the weighted sum of the time and cost
savings properties must be greater than 0.5 in order for F9d to be derived (labelled In).
Otherwise F8p (CompetitiveAdvantage) will be In.

4. Explanation From The Argument Map

The graph can be used to construct an explanation according to the well known Issue-
Rule-Application-Conclusion method, widely used in US Law Schools and advocated



Figure 3. Argumentation Schemes for Competitive Advantage

in [18]. In this context the issue is the main point of contention in the case, rather than
the top level nodes of the CATO hierarchy: thus any node may be the issue. A red node
with a green child will indicate an issue, because the alternative position will have been
preferred. In the case of MBL (USA) Corp. v. Diekman the relevant node is InfoValuable
(see Figure 4). This is supported by InfoKnownToCompetitors, but excluded because
SecurityMeasures is preferred, citing Mason v. Jack Daniel Distillery as a precedent. The
issue is thus whether the information is valuable if known to competitors when security
measures were taken, and the rule from Mason, as modelled in [9], is that it is, so we can
conclude that the information is valuable in MBL.

Sometimes, an issue will appear at the level of factor ascription. Consider Arco In-
dustries Corp. v. Chemcast Corp: all the base level factors favour the defendant and es-
tablish that the information was not a trade secret. We must therefore look for a factor
with magnitude, in which the facts give a relatively low weight to the ascription. Here
we find that DistinctProducts was assigned even though there was some resemblance.
The issue here is whether the products should be considered distinct where there is some
resemblance. In the decision, this was indeed the main point at issue, and it was decided
that, despite some similarities, the defendant’s product did not have an “indentation be-
low the planar surface of the grommet which in turn lies below the peripheral sealing
ridge”, and this was enough to consider them distinct. A second issue raised in the case
concerned disclosure to outsiders, and here it was found that the plaintiff had indeed dis-
closed to outsiders, even though the outsiders concerned were restricted to customers.
Thus the issue does disclosure to customers count as disclosure to outsiders was also
resolved in favour of the defendant. Once these factors have been described, there were
no more points for the plaintiff to argue.



Figure 4. Argument map for the issue in MBL as modelled in [9], shown in Table 1
.

4.1. Refinement and Maintenance

It is rare that the ADP will be right first time, and so the development process will include
running a set of test cases, and refining the ADP in the light of wrongly decided cases
until all cases are explained correctly, or can be rejected as overruled. But even then the
new decisions must be monitored, so that the ADP and its realisation can be maintained
as the case law evolves. The visual representation in argument maps greatly supports the
refinement and maintenance of the theory recorded in the ADP, by identifying the nodes
which need attention.

We began this section with an explanation for the outcome of MBL based on the
ADP of [9], where the information was considered valuable, even though known to com-
petitors, because security measures had been taken. This was a perfectly good explana-
tion, but in fact MBL was decided for the defendant, and so the explanatory preference
is incorrect. This problem emerged when testing the system, but the procedure would be
the same if maintaining the representation in the light of new decisions.

Having identified the issue on which the case turned, whether the misappropriated
information was valuable, we can examine the relevant nodes in the ADP. In this case
they are the nodes shown in Table 1. It can be seen from the InfoValuable node that F6p,
SecurityMeasures, is preferred to InfoObtainable, in virtue of the precedent Mason. In
MBL, InfoObtainable is accepted in virtue of F20d, InfoKnownToCompetitors, whereas
in Mason it was accepted on the basis of F16d, InfoReverseEngineerable. As is clear
from the second node in Table 1, F16d and F20d are given equal priority.

The solution is to recognise the lesser status of F16d by removing it from InfoOb-
tainable: that the information may be discoverable by reverse engineering is clearly sig-
nificantly weaker than it actually being known to competitors. Because it was the relative
weakness of F16d that gave InfoObtainable its low priority in InfoValuable in Table 1,
we can now increase the priority of InfoObtainable to reflect the decision in MBL. F16d
remains with the original low priority, as derived from Mason. The revised nodes are
shown in Table 2. Note that the modular design means that changes can be made to these
nodes confident that other nodes will not be jeopardised.

In the case of The Boeing Company v. Sierracin Corporation, the defendant argued
that the information had been disclosed to outsiders (see Figure 5). Here the issue is
whether if the information is disclosed to subcontractors, it is considered to have been
disclosed to outsiders. The current weights give the answer “no”, but had Boeing been
found for the defendant, this would need to be revised so that subcontractors were now
included in outsiders when ascribing this factor.



Table 2. Fragment of ADP revised in the light of MBL

Node Children Acceptance Conditions Justification

InfoValuable

F6p
F8p
F11d
F15p
F16d
InfoObtainable

REJECT IF F11d
ACCEPT IF F8p
REJECT IF InfoObtainable
ACCEPT IF F6p
ACCEPT IF F15p
REJECT IF F16d
ACCEPT

Silfen
Lewis
MBL
College
Restatement
Mason

InfoObtainable
F15p
F20d F24d

REJECT IF F15p
ACCEPT IF F24d OR F20d
REJECT

College
Ferranti

Figure 5. Fragment of Boeing showing disputed factor ascription

5. Discussion and Concluding Remarks

Angelic and Carneades are natural partners, since both conceptualise reasoning as mov-
ing from facts to conclusion through a series of arguments. Using Carneades to realise
the acceptance conditions of an ADP encapsulating a theory of a legal domain is very
straightforward: the node ID (or its negation) supplies the conclusion, the children in the
body of the condition the premises, the weight indicates its priority and the source is also
recorded. Factors with magnitude are also straightforwardly implemented through com-
paring weights as described in Section 3.2. This contrasts very favourably with previous
implementations which required hand crafted code (e.g [19]). Moreover the argument
schemes are held in a file separate from the program which executes them. This, given
the simple correspondence between the schemes and the acceptance conditions, means
that they can readily be edited to refine and maintain the theory by a knowledge engineer
without any particular programming expertise.

A second major advantage of using Carneades to implement the ADP is that
Caneades outputs an argument graph, directly supporting a visual representation rather
than the textual explanations produced in previous work such as [8] and [20]. Visual pre-
sentations of argument have been popular since the use of Toulmin’s argument scheme,
and make the reasoning far easier to follow than working through a sometimes lengthy
set of textual conclusions. The colour coding in Carneades makes it especially easy to
identify the main issues, the key points of contention in the case, essential for deploying
IRAC explanations, and to locate problems in the theory.

Although our focus in this paper has been on visualising cases, we would also like
to point out that the system can be run in batch mode, so that a large number of test cases
can be run quickly, generating argument maps for all of them at once. This enables any



failing cases to be identified for visual examination and correction. Equally this could be
helpful for to comparing the performance of competing theories expressed as ADPs.

Our theory has been validated by correctly deciding all the test cases taken from the
available literature. The method is not limited to the common law or theories derived
from cases, but can be used to implement legal theories derived from any source texts.

Taken together, the Angelic methodology and the Carneades argumentation system
provide a means of producing an executable theory of a legal domain drawn from leading
cases, statutes, commentaries and experts, in a way which can readily be transformed
into executable form to produce an evaluation and visual representation of the arguments
in a particular case. As such it provides an excellent tool to support the analysis of a
domain, refinement of the resulting theory and its maintenance as the law evolves.
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