
Interchanging arguments between
Carneades and AIF

Floris BEX a, Thomas GORDON b, John LAWRENCE a and Chris REED a

a Argumentation Research Group, School of Computing, University of Dundee, UK
b Fraunhofer FOKUS, Berlin, Germany

AbstractWe have implemented a translator that translates Carneades Argument
Graphs as specified in the LKIF files of the Carneades editor to a database specifi-
cation of the Argument Interchange Format and vice versa. In this paper the algo-
rithms for this translation are presented.

Keywords. argument interchange, argument ontology, argumentation tools

1. Introduction

The Argument Interchange Format (AIF) [4] aims to facilitate the research and develop-
ment of tools for argument manipulation, argument visualization and multi-agent argu-
mentation. An abstract core ontology that encapsulates the common subject matter of the
various approaches to argumentation has been proposed, which can act as a centrepiece
to individual (logical, linguistic, graphical) languages for expressing arguments. Further-
more, services are available that allow for interchange between implementations of the
AIF ontology and a number of argument visualisation tools, such as Rationale [13] and
Araucaria [11]. Translation functions also exist [1] between the abstract specification of
the AIF and the formal logical language of ASPIC+ [9], formally grounding the AIF
ontology. Thus, using the AIF as an interlingua arguments constructed in Rationale or
Araucaria, can be evaluated using the different semantics proposed in [9].

The Carneades system is a tool for argument visualisation, evaluation and construc-
tion based on the data model of Carneades Argument Graphs (CAGs) [6]. While at
present it can be considered a generally applicable argumentation support tool, it was
originally developed with legal reasoning in mind and incorporates an explicit notion of
proof standards in its computation of the acceptability of statements. Further evidence of
Carneades’ legal heritage is evident in the file format it uses, an XML serialisation of the
Legal Knowledge Interchange Format (LKIF). The authors intend to extend the reach of
the AIF by defining and implementing algorithms for translating Carneades Argument
Graphs, as specified in the LKIF format of the Carneades editor, to AIF argument graphs
as specified in the SQL specification of the AIF.

2. The Argument Interchange Format

The AIF aims to consolidate some of the defining work on (computational) argumen-
tation [4]. It works under the assumption that a common vision and consensus on the

concepts and technologies in the field promotes the research and development of new
argumentation tools and techniques. In addition to practical aspirations, such as develop-
ing a way of interchanging data between tools for argument manipulation and visualiza-
tion, the AIF project also aims to develop a commonly agreed-upon core ontology that
specifies the basic concepts used to express arguments and their mutual relations.

The AIF ontology places at its core a distinction between information and schemes,
patterns that describe argumentative relations between information. Inference, conflict
and preference are treated as genera of a more abstract class of schematic relationships
[3], which greatly simplifies the ontological machinery required for handling them. Thus,
inference schemes (which are akin to argumentation schemes) and conflict schemes in
the AIF ontology embody the general principles expressing how it is that q is inferable
from p or p is in conflict with q, respectively.

The AIF ontology further assumes that the individual entities that fulfil or instantiate
generic schemes can be represented as nodes in a directed graph called an AIF argu-
ment graph. Accordingly, there are two types of nodes: information nodes (I-nodes) and
scheme nodes (S-nodes). I-nodes are used to represent information or statements, which
may serve as, for example, claims, premises, conclusions, attackers and so on. S-nodes
denote applications of schemes: rule application nodes (RA-nodes) denote applications
of an inference rule or scheme and conflict application nodes (CA-nodes) denote spe-
cific conflicts. In our example, RA- and CA-nodes capture the passage or the process of
actually inferring q from p or conflicting p with q, respectively.

Definition 2.1 [AIF graph]
An AIF argument graph G is a simple digraph consisting of nodes and edges.

1. Each node has one type either I or RA or CA;
2. There are no edges between two nodes of type I;
3. Given two nodes n1 and n2 and an edge (n1, n2), we say that n1 is a predecessor

of n2 and n2 is a successor of n1;
4. Nodes of type RA and CA have at least one predecessor and one successor.

I-nodes can only be connected to other I-nodes via S-nodes (2): there must be a scheme
that expresses the rationale behind the relation between I-nodes. S-nodes, on the other
hand, can be connected to other S-nodes directly (see Figure 1); however, there must
always be I-nodes at the beginning or end of a chain of S-nodes (4). The edges in a
graph are typed; Table 1 shows the default edge types for the various combinations of
nodes [4]. Note that the full AIF specification also has preference schemes and preference
application (PA) nodes, but that since Carneades does not have an explicit notion of
preference these are not needed for current purposes. Figure 1 shows an example of an
AIF argument graph, in which I-nodes are shown as rectangles and S-nodes as diamonds.
Note the conflict between the information that Bob is not reliable and the inference from
Bob’s testimony to the conclusion, which represents an undercutter.

In Definition 2.1, the concepts from the AIF ontology are presented as a simple alge-
braic structure. Representing the ontology in such an abstract way allows us to compare
it with other algebraic models of argument, such as the ASPIC+ framework [9,1] and
Carneades Argument Graphs (section 3). However, the AIF has also been implemented
in a number of languages aimed at practical applications, such as RDFs and OWL-XML.

to I-node to RA-node to CA-node

from I-node information used in applying information in conflict with
an inference successor of the CA

from RA-node inferring a conclusion in the inferring a conclusion in the inferring a conclusion in the
form of information form of an inference application form of a conflict application

from CA-node predecessor of CA is in predecessor of CA is in conflict predecessor of the CA is in
conflict with information with inference application conflict with conflict

Table 1. Edge types in the AIF

Harry was in Scotland

Dundee is in ScotlandHarry was in the US

RACA

RA RA

Wilma testifies that Harry was

in the US

Bob testifies that Harry was

in Dundee

Harry was in Dundee

CA

Bob is

not reliable

Figure 1. An AIF argument graph

Another example is AIFdb1, a relational database definition [8] which mirrors the speci-
fication in OWL but is designed to simplify the scaling issues of the large-scale argument
infrastructure of the Argument Web [10]. AIFdb allows for the storage and retrieval of
AIF compliant argument structures and offers a rich array of web service interfaces al-
lowing for interaction with low level argument components (nodes, edges, schemes), as
well as modules which handle the import and export of numerous formats such as SVG,
DOT, RDF-XML and the formats of the Carneades, Rationale and Araucaria tools. To
facilitate import and export the database also allows for the creation of node sets which
can be used to perform operations on a specific grouping of argument components.

3. Carneades Argument Graphs

Carneades is an open source argumentation system2 [6] for argument construction and
evaluation originally inspired by legal reasoning but more generally applicable. It works

1http://www.arg.dundee.ac.uk/AIFdb/
2http://carneades.github.com. The version of the Carneades editor used was 1.0.2, the newest version pub-

licly available at the time of writing. A new version is currently under development

with an abstract model of argument graphs, called Carneades Argument Graphs (CAG)
[6], which is comparable to AIF and indeed was inspired in part by AIF [5]. In a CAG
there are nodes representing statements and nodes representing arguments, the latter of
which instantiate argumentation schemes defined in a separate rule language.

Definition 3.1 [Carneades Argument Graph]
A Carneades Argument Graph CAG is a bipartite graph consisting of statements and
arguments.

1. Each argument is of one type either pro or con;
2. Each argument a has zero or more premises of the form (polarity, type,

statement) and one conclusion of the form statement, where

(a) polarity is either pos or neg;
(b) type is one of ordinary, assumption, exception;
(c) statement is the statement that serves as the premise or conclusion

The premises of pro- and con-arguments are reasons for and against the conclusion,
respectively. A key feature of Carneades is that it provides a natural account of reasoning
under burden of proof. To allow this burden of proof to be distributed, CAGs distinguish
several types of premises, namely ordinary premises (which have to be shown to hold
before the conclusion can be inferred), assumption premises (which are assumed to hold
until questioned) and exception premises (which place the burden of production on the
respondent). Premises can be either positive or negative, where a negative premise is the
negation of the statement of the premise.

This model of argument graphs in Carneades has been relatively stable throughout
the literature [6,7,5]. A new version of Carneades, which uses an updated version of the
CAG data structure, is currently under development. The most important difference is
that the distinction between different types of premises (ordinary, exception, assumption)
has been removed and that exceptions are modelled in a more conventional way, namely
as undercutters. For this paper, however, we use the version of CAGs that at the time
of writing was published and publicly available and we leave the translation of this new
model for future research.

Figure 2 shows a CAG version of the example AIF argument graph of Figure 1.
In this visualization, statement nodes are shown with boxes and argument nodes with
circles. The type of premise is shown on the link to the argument node. Pro-arguments
are rendered as ’+’ arguments whilst con-arguments are rendered as ’–’ arguments.

Bob is not reliable

Bob testifies that Harry was in

Dundee

Wilma testifies that Harry was in

the US

Dundee is in Scotland

Harry was in Dundee

Harry was in the US

Harry was in Scotland

Figure 2. A CAG version of the example

Like AIF, the CAG model is specified in different ways for different purposes. For
example, Carneades Argument Evaluation Structures (CAES) [7] define argument graphs

in a logical formalism, which allows for evaluation of the arguments in the graph, and
the Carneades system itself produces LKIF files. LKIF, short for Legal Knowledge Inter-
change Format, is an XML schema developed with the aim of facilitating the interchange
of legal rules and legal arguments [5]. LKIF consists of a rule language for represent-
ing argumentation schemes and legal norms and an argument language for representing
CAGs3. It is the argument part, the part of LKIF that serialises the abstract model of CAG
as XML, that we are interested in. As in Definition 3.1, an LKIF file specifies statements
and arguments. In addition, it specifies some extra attributes (e.g. the title of a CAG, the
id of a node) which are not directly interesting for our purposes.

4. Translating between AIF and CAG

AIFdb has a web service interface for the import and export of LKIF files. To import
a file, it is posted to the database4 and the XML is parsed using a standard parser. The
translation from CAG to AIF then proceeds as in algorithm 1. It is also possible to save
arguments in the AIFdb as LKIF files. The translation from AIF to CAG is shown in
algorithm 2. Arrays and variables are denoted with a ‘$’, where an array starts with a
capital letter (i.e. $Array) and a variable with a lower case letter (i.e. $var).

Lines 1-22 in algorithm 1 translate the statements in the CAG to AIF; statements
that are used positively and negatively are first put into two separate lists (line 1-10).
Because the concept of negative premises does not exist in AIF, statements that appear
as such are then translated by inserting the text ‘it is not the case that’ (lines 15, 20).
Furthermore, if the negative premise is also used as a positive premise or conclusion, the
algorithm inserts symmetrical conflict relations to indicate the logical conflict between a
statement and its negation (lines 15-17). Lines 23-44 then handle the translation of the
arguments from CAG to AIF. Con arguments are translated as CA-nodes (line 25) and
pro arguments as RA-nodes (line 28). Exception premises in CAG are then translated as
undercutters in AIF (lines 37-39, cf. figure 1, 2). Translating from AIF to CAG is slightly
more straightforward (algorithm 2). I-nodes are translated into statements (line 2,3). S-
nodes with an edge to an I-node are translated as standard arguments (lines 4-11). The
predecessors of these S-nodes are then either premises (in the case of I-nodes, lines 15,
16) or exceptions (in the case of CA-node undercutters, lines 18, 19).

If we assume the original AIF graph does not have preferences, the translation from
AIF to CAG and back gives us exactly the original AIF graph. Note that while both the
Carneades editor and the CAES framework cannot handle cycles, CAG and LKIF can
and cyclic conflict is translated as two con-arguments. There are situations in which the
translation from CAG to AIF and back does not give us exactly the same CAG structure.
Arguments with zero premises are left untranslated, as AIF cannot represent ‘loose’ S-
nodes. Furthermore, AIF nodes do not have a ‘negative’ property so all I-nodes will be
translated as positive premises even if they originally were negative. The information
content is the same, however: where the original CAG contained a negative premise p,
the CAG that’s exported from AIF will have a positive premise it is not the case that
p. Furthermore, recall that if the original CAG contains the same proposition as both a

3The new version of Carneades, which is under development, has a separate format for argument graphs
called Carneades Argument Format (CAF)

4http://www.arg.dundee.ac.uk/AIFdb_upload/

Algorithm 1 Algorithm for translating CAG to AIF
for all argument a do

add conclusion(a) to $Pos
for all p = premise(a) do

if polarity(p) = pos then
5: add statement of p to $Pos

else
add statement of p to $Neg

end if
end for

10: end for
for all statement s do

if s in $Pos then
create I-node n with text of s
if s in $Neg then

15: create I-node n′ with text ’It is not the case that [text of s]’
create two CA-nodes cai, caj
create edges (n,cai), (cai, n′), (n′,caj), (caj ,n)

end if
else

20: create I-node n with text ’It is not the case that [text of s]’
end if

end for
for all argument a do

if direction(a) = con then
25: create CA-node ca and set $argS to ca

create edge from ca to the node corresponding to conclusion(a)
else

create RA-node ra and set $argS to ra
create edge from ra to the node corresponding to conclusion(a)

30: end if
for all p = premise(a) do

if polarity(p) = pos then
set $prem to node corresponding to the statement of p

else
35: set $prem to node corresponding to the negation of the statement of p

end if
if type(p)= exception then

create new CA-node ca′

create edge (ca′, $argS) and create edge ($prem, ca′)
40: else

create edge ($prem, $argS)
end if

end for
end for

Algorithm 2 Algorithm for translating AIF to CAG
for all node n do

if type(n) = I then
create statement s with text of n

else if type(n) = CA or type(n) = RA then
5: set $conc to successor(n)

set $Prem to predecessors(n)
if type($conc) = I then

if type(n) = CA then
create argument a, direction(a) = con

10: else
create argument a, direction(a) = pro

end if
create conclusion $conc for a
for all p in $Prem do

15: if type(p) = I then
create premise (pos, ordinary, s) for a (s is statement of p)

else
set $root to predecessor(p)
create premise (pos, exception, s′) for a (s′ is statement of $root)

20: end if
end for

end if
end if

end for

positive and a negative premise this will introduce a conflict cycle in the AIF, which will
be translated back into CAG as two con-arguments which were not in the original CAG.
Finally, both assumptions and ordinary premises are translated into AIF as I-nodes so the
distinction between them is effectively lost in translation.

5. Conclusions and future research

Recently, there has been an increased interest in translations from Carneades to other
formal logical frameworks for argumentation (e.g. [14]). This other work, however, only
defines a translation between two theoretical (logical) frameworks and does not, like
the current work, define and implement algorithms for translating between abstract data
structures for argument graphs (i.e. AIF graphs and CAGs). Furthermore, the translations
in [14] are only meant to ensure that the same statements will be acceptable in both the
CAG and the ASPIC+ framework. In contrast, the objective of AIF is to make it easier
to translate among different models of argument structure and to help clarify differences
in how different models represent argumentative information.

A certain degree of isomorphism allows for practical interchange between Carneades
and systems compatible with the Argument Web such as Araucaria and Rationale. As
a result, it is, for example, possible to manipulate some of the 2,000 or so argument
resources in the argument web in Carneades, and visualise the result in Rationale; it is

possible to extend the Sacco and Vanzetti case analysed in Araucaria [2] with explicit
indication of burdens of proof in Carneades; it is possible to ’argublog’ [12] in response
to arguments analysed in Carneades, and compute the acceptability of the result using
ASPIC+. The barriers between domains of argumentation (legal and medical, for exam-
ple) are being broken down as effectively as the barrier between systems and theories
of argumentation, and as these barriers come down, a foundation is laid for realising the
vision of an open, integrated Argument Web.

Acknowledgements

This work was initiated by Tom Gordon’s visit to Dundee, which was supported by the
University of Dundee’s School of Computing and Fraunhofer FOKUS in Berlin. We
further acknowledge the support of the EPSRC under grant EP/G060347/1 for this work.

References

[1] F.J. Bex, S. Modgil, H. Prakken, and C.A. Reed. On logical reifications of the argument interchange
format. Journal of Logic and Computation, 2012. To Appear.

[2] F.J. Bex, H. Prakken, C.A. Reed, and D.N. Walton. Towards a Formal Account of Reasoning about
Evidence: Argumentation Schemes and Generalisations. Artificial Intelligence and Law, 11(2/3):125–
165, 2003.

[3] F.J. Bex and C.A. Reed. Schemes of Inference, Conflict and Preference in a Computational Model of
Argument. Studies in Logic, Grammar and Rhetoric, 36, 2011.

[4] C.I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk, and
S. Willmott. Towards an argument interchange format. The Knowledge Engineering Review, 21:293–
316, 2006.

[5] T.F. Gordon. The legal knowledge interchange format - estrella deliverable d4.1. Technical report,
Fraunhofer FOKUS, Berlin, 2012.

[6] T.F. Gordon, H. Prakken, and D.N. Walton. The Carneades model of argument and burden of proof.
Artificial Intelligence, 171:875–896, 2007.

[7] T.F. Gordon and D. Walton. Proof Burdens and Standards. In I. Rahwan and G. Simari, editors, Argu-
mentation in Artificial Intelligence, pages 239–260. Springer, 2009.

[8] J. Lawrence, F. Bex, M. Snaith, and C. Reed. Aifdb: Infrastructure for the argument web. Submitted to
COMMA 2012 demonstration track, 2012.

[9] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and Com-
putation, 1:93–124, 2010.

[10] I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web. Artificial
Intelligence, 171:897–921, 2007.

[11] C.A. Reed and G. Rowe. Araucaria: Software for Argument Analysis, Diagramming and Representation.
International Journal of AI Tools, 13(4):961–980, 2004.

[12] M. Snaith, F.J. Bex, J. Lawrence, and C. Reed. Implementing argublogging. Submitted to COMMA
2012 demonstration track, 2012.

[13] T. Van Gelder. The rationale for rationale. Law, Probability and Risk, 6:23–42, 2007.
[14] B. van Gijzel and H. Prakken. Relating carneades with abstract argumentation via the aspic+ framework

for structured argumentation. Argument and Computation, 2012. To Appear.

