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Abstract. Carneades is a rather general framework for argumentation. Unlike many
other approaches, Carneades captures a number of aspects, like proof burdens,
proof standards etc., which are of central importance, in particular in legal argu-
mentation.

In this paper we show how Carneades argument evaluation structures can be re-
constructed as abstract dialectical frameworks (ADFs), a recently proposed gener-
alization of Dung argumentation frameworks (AFs). This not only provides at least
an indirect link between Carneades and AFs, it also allows us to handle arbitrary
argument cycles, thus lifting a restriction of Carneades. At the same time it pro-
vides strong evidence for the usefulness of ADFs as analytical/semantical tools in
argumentation.

1. Introduction

The Carneades model of argumentation, introduced by Gordon, Prakken and Walton in
[8] and developed further in a series of subsequent papers, e.g. [9], some of them ap-
pearing in this volume [2,10], is an advanced general framework for argumentation.1 It
captures both static aspects, related to the evaluation of arguments in a particular context
based on proof standards for statements and on weights arguments are given by an audi-
ence, and dynamic aspects, covering for instance the shift of proof burdens in different
stages of the argumentation process.

Unlike many other approaches, Carneades does not rely on Dung’s argumentation
frameworks (AFs) [5] for the definition of its semantics, more specifically its notion
of acceptable arguments. One goal of this paper is to provide a link, albeit an indirect
one, between Carneades and AFs. As we will see, both are instances of a more general
framework. Moreover, in spite of this generality, Carneades suffers from a restriction: it
is assumed that the graphs formed by arguments are acyclic. This is not as bad as it may
first sound, as the use of pro and con arguments allows some conflicts to be represented
which require cyclic representations in other frameworks, e.g. in Dung argumentation
frameworks [5]. Still, cycles in argumentation appear so common that forbidding them

1As of June 2010, [8] is among the 10 most cited papers which appeared in the Artificial Intelligence Journal
over the last 5 years.



right from the start is certainly somewhat problematic. And indeed, the authors in [8]
write (page 882):

“We ... leave an extension to graphs that allow for cycles through exceptions for

future work."

Finishing this open task, that is, overcoming the mentioned limitation, is another main
goal of this paper. We achieve this by translating Carneades argument evaluation struc-
tures to a framework which is able to handle cycles, and which offers a selection of ad-
equate semantics. The target framework we will be using here are abstract dialectical
frameworks (ADFs), and our second main goal is to provide evidence that these frame-
works are indeed useful tools in argumentation.

ADFs are a powerful generalization of Dung-style argumentation frameworks [5]
recently proposed by Brewka and Woltran in [4]. Dung argumentation frameworks have
an implicit, fixed criterion for the acceptance of a node in the argument graph: a node
is accepted iff all its parents are defeated. This acceptance criterion can be viewed as
an implicit boolean function assigning a status to an argument based on the status of its
parents. The basic idea underlying ADFs is to make this boolean function explicit, and
then to allow arbitrary acceptance conditions for nodes to be specified.

As shown in [4], the standard semantics for Dung frameworks - grounded, preferred
and stable - can be generalized to ADFs, the latter two to a slightly restricted class of
ADFs called bipolar, where each link in the graph either supports or attacks its target
node. Since all ADFs we are dealing with in this paper are bipolar, we will simply speak
of ADFs and omit the adjective “bipolar" whenever there is no risk of confusion. Brewka
and Woltran also discuss how acceptance conditions can conveniently be specified using
weights of the links in an ADF. This also makes it possible to capture proof standards in
a straightforward way. All this will come in handy for our reconstruction.

There are some issues that need to be addressed before we start our reconstruction.
First of all, Carneades is a moving target: the framework has developed over time, and
still is developing. We thus need to fix the particular version we are dealing with. We de-
cided to choose the version presented in the book chapter [9], partly because we assume
this chapter will have many readers, partly because this version is quite well-suited for
our purposes, as we will see later.

Secondly, the dynamic features of Carneades have no counterpart in ADFs. ADFs
were invented to capture the static evaluation of arguments, or more generally statements,
given flexible forms of dependencies among them. We will restrict our discussion in this
paper to the static part of Carneades. This is entirely sufficient for the purposes of this
paper, and it allows us to slightly simplify the definitions from [9], stripping off dynamic
aspects irrelevant to our goals. In particular, we do not discuss different argumentation
stages. What we are interested in is the evaluation of stage specific Carneades argument
structures.

The paper is organized as follows. We will first present Carneades, using simplified
versions of the definitions in [9] which capture the relevant stage specific notions. We
then present ADFs together with their semantics. The subsequent chapter contains the
main results of the paper: it shows how to translate Carneades argument structures to
ADFs, proves that the translation yields the desired results for acyclic Carneades struc-
tures, and discusses how this allows us to handle arbitrary cycles in argument structures.



2. Carneades

We start with the definition of arguments in Carneades [9]:

Definition 1 (argument). Let L be a propositional language. An argument is a tuple�P,E, c� where P ⊂ L are its premises, E ⊂ L with P ∩E = � are its exceptions and
c ∈ L is its conclusion. For simplicity, c and all members of P and E must be literals, i.e.
either an atomic proposition or a negated atomic proposition. Let p be a literal. If p is c,
then the argument is an argument pro p. If p is the complement of c, then the argument
is an argument con p.

An argument evaluation structure was defined in [9] as a triple consisting of a stage,
an audience, and a function assigning a proof standard to propositions. Since, as men-
tioned in the introduction, we are only interested here in stage specific argument evalua-
tion, we skip the status part of the definition of stages (see [9]), keeping only the set of
arguments. Furthermore, an audience is a pair consisting of a set of assumptions and a
weight function. For simplicity we will represent these two parts explicitly, turning the
triple into a quadruple:

Definition 2 (argument evaluation structure). A (stage specific) Carneades argument
evaluation structure (CAES) is a tuple �arguments, assumptions, weights, standard�,
where

1. arguments is an acyclic2 set of arguments,
2. assumptions is a consistent set of literals, those assumed by the current audience,
3. weights is a function assigning a real number n, 0 ≤ n ≤ 1, to each argument, and
4. standard is a total function mapping propositions in L to a proof standard (to be

defined below).

The acceptability of a proposition p in a CAES depends on its proof standard.
Carneades distinguishes 5 such standards, each one based on a particular way of aggre-
gating applicable pro and con arguments. The notion of applicability may in turn depend
on the acceptability of (other) propositions:

Definition 3 (applicability). Let S = �arguments, assumptions, weights, standard� be a
CAES. An argument �P,E, c� ∈ arguments is applicable in S if and only if

• p ∈ P implies p ∈ assumptions or [p �∈ assumptions and p is acceptable in S], and
• p ∈ E implies p �∈ assumptions and [p ∈ assumptions or p is not acceptable in S].

What remains to be defined are the proof standards scintilla of evidence, preponder-

ance of evidence, clear and convincing evidence, beyond reasonable doubt and dialecti-

cal validity, which we will abbreviate as se, pe, ce, bd and dv, respectively. We directly
define acceptability under a particular proof standard.

Definition 4 (acceptability). Let S = �arguments, assumptions, weights, standard� be
a CAES. A proposition p ∈ L is acceptable in S if and only if one of the following
conditions holds:

2A set of arguments is acyclic if its dependency graph is. The dependency graph has a node for each propo-
sitional atom appearing in some argument. Furthermore, there is a link from q to p whenever p depends on q,
that is, whenever there is an argument pro or con p with q or ¬q in its set of premises or exceptions.



• standard(p) = se and there is at least one applicable argument for p,
• standard(p) = pe, p satisfies se, and the maximum weight assigned to an applica-

ble argument pro p is greater than the maximum weight of an applicable argument
con p,

• standard(p) = ce, p satisfies pe, and the maximum weight of applicable pro argu-
ments exceeds some threshold α, and the difference between the maximum weight
of the applicable pro arguments and the maximum weight of the applicable con
arguments exceeds some threshold β,

• standard(p) = bd, p satisfies ce, and the maximum weight of the applicable con
arguments is less than some threshold γ,

• standard(p) = dv, and there is at least one applicable argument pro p and no
applicable argument con p.

Note that, although acceptability is defined in terms of applicability, and applica-
bility in terms of acceptability, the definitions are well-founded. This is due to the fact
that the set of arguments is not allowed to contain cycles. However, this interdependency
makes it quite difficult to generalize the definitions directly to the cyclic case. We will
see how ADFs can be used to overcome this limitation.

3. Abstract Dialectical Frameworks

An ADF [4] is a directed graph whose nodes represent arguments or statements which
can be accepted or not. The links represent dependencies: the status of a node s only
depends on the status of its parents (denoted par(s)), that is, the nodes with a direct link
to s. In addition, each node s has an associated acceptance condition Cs specifying the
conditions under which s is accepted. This is where ADFs go beyond Dung argumen-
tation frameworks. Cs is a boolean function yielding for each assignment of values to
par(s) one of the values in , out for s. As usual, we will identify value assignments with
the sets of nodes which are in . Thus, if for some R ⊆ par(s) we have Cs(R) = in , then
s will be accepted provided the nodes in R are accepted and those in par(s) �R are not
accepted.

Definition 5. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements,
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs ∶ 2par(s) → {in,out}, one for each

statement s. Cs is called acceptance condition of s.

S and L obviously form a graph, and we sometimes refer to elements of S as nodes.
For the purposes of this paper we will only deal with a subset of ADFs, called bipolar in
[4]. In such ADFs each link is either attacking or supporting:

Definition 6. Let D = (S,L,C) be an ADF. A link (r, s) ∈ L is

1. supporting iff, for no R ⊆ par(s), Cs(R) = in and Cs(R ∪ {r}) = out ,
2. attacking iff, for no R ⊆ par(s), Cs(R) = out and Cs(R ∪ {r}) = in .



For simplicity we will only speak of ADFs here, keeping in mind that all ADFs in
this paper are indeed bipolar.

It turns out that Dung’s standard semantics - grounded, stable, preferred - can be
generalized adequately to ADFs. We first introduce the notion of a model. Intuitively, in
a model all acceptance conditions are satisfied.

Definition 7. Let D = (S,L,C) be an ADF. M ⊆ S is a model of D if for all s ∈ S we
have s ∈M iff Cs(M ∩ par(s)) = in .

We first define the generalization of grounded semantics:

Definition 8. Let D = (S,L,C) be an ADF. Consider the operator

ΓD(A,R) = (acc(A,R), reb(A,R))
where

acc(A,R) = {r ∈ S � A ⊆ S′ ⊆ (S �R)⇒ Cr(S′ ∩ par(r)) = in}, and
reb(A,R) = {r ∈ S � A ⊆ S′ ⊆ (S �R)⇒ Cr(S′ ∩ par(r)) = out}.

ΓD is monotonic in both arguments and thus has a least fixpoint. E is the well-

founded model of D iff for some E′ ⊆ S, (E,E′) is the least fixpoint of ΓD.

For stable models we apply a construction similar to the Gelfond/Lifschitz reduct
for logic programs. The purpose of the reduction is to eliminate models in which nodes
are in just because of self supporting cycles:

Definition 9. Let D = (S,L,C) be an ADF. A model M of D is a stable model if M is
the least model of the reduced ADF DM obtained from D by

1. eliminating all nodes not contained in M together with all links in which any of
these nodes appear,

2. eliminating all attacking links,
3. restricting the acceptance conditions Cs for each remaining node s to the remain-

ing parents of s.

Preferred extensions in Dung’s approach are maximal admissible sets, where an ad-
missible set is conflict-free and defends itself against attackers. This can be rephrased as
follows: E is admissible in a Dung argumentation framework A = (AR,att) iff for some
R ⊆ AR

• R does not attack E, and
• E is a stable extension of (AR-R,att ∩ (AR-R ×AR-R)).

This leads to the following generalization:

Definition 10. Let D = (S,L,C), R ⊆ S. D-R is the ADF obtained from D by

1. deleting all nodes in R together with their acceptance conditions and links they
are contained in.

2. restricting acceptance conditions of the remaining nodes to the remaining parents.



Definition 11. Let D = (S,L,C) be an ADF. M ⊆ S is admissible in D iff there is
R ⊆ S such that

1. no element in R attacks an element in M , and
2. M is a stable model of D-R.

M is a preferred model of D iff M is (subset) maximal among the sets admissible in D.

Brewka and Woltran also introduced weighted ADFs where an additional weight
function w assigns qualitative or numerical weights to the links in the graph. This allows
acceptance conditions to be defined in a domain independent way, based on the weights
of links rather than on the involved positions. They also showed how the proof standards
proposed by Farley and Freeman [7] can be formalized based on this idea.

Since the - rather straightforward - treatment of weights in ADFs will be illustrated
in our translation, we do not give further details here and refer the reader to [4].

4. The Translation

We now show how to translate a CAES S = �arguments, assumptions, weights, standard�
into a dialectical framework ADF (S) (more precisely: a weighted dialectical frame-
work) such that the semantics of S , in other words the outcome of the evaluation, is
preserved.

The translation has to take into account that, when scintilla of evidence is used as
proof standard, both a proposition p and its complement p may be acceptable. For this
reason we have to use two nodes for each literal appearing in one of the arguments, one
representing the proposition, the other its complement.

We start with the translation of arguments. Let a = �P,E, c� be an argument with
P = {p1, . . . , pk} and E = {e1, . . . , er}. The translation of a is the graph (V,R) with

V = {p1, . . . , pk, e1, . . . , er, c, c, a}
R = {(pi, a) � pi ∈ P} ∪ {(ei, a) � ei ∈ E} ∪ {(a, c), (a, c)}.

Note that it is not sufficient to have nodes representing the literals in the argument.
We also need the node a representing the argument itself.3 We will call the latter type of
nodes argument nodes, the other nodes statement nodes.

The translation of all arguments in arguments gives us the graph underlying the
ADF. We next define the weights associated with the links in the ADF.

Let argument a be as above. The weight function w is defined as follows:

w(x, a) = + for x ∈ P
w(x, a) = − for x ∈ E
w(a, c) = (+, n) where n = weights(a)
w(a, c) = (−, n) where n = weights(a)

Thus, the weights of arguments in Carneades are attached to the links connecting
the corresponding argument node with the conclusion and its negation. In addition, pro
argument links are marked with a +, con argument links with a −.

3One of the reasons for this is that otherwise the resulting ADFs might not be bipolar.



Example 1. Consider the argument

a = �{bird},{peng, ostr}, f lies�
and assume weights(a) = 0.8. The ADF graph generated by this argument is shown in
Fig. 1 (we mark links with their weights).

bird

ostr

peng

a

flies

flies

(+,0.8)

(−,0.8)

+
−
−

Figure 1. ADF representation of a Carneades argument

The effects of assumptions are represented via the acceptance conditions of argu-
ment nodes as follows. Let n be an argument node in the graph obtained from translating
a set of arguments as described above. The acceptance condition Cn is defined as:

Cn(R) = in iff
(1) for all pi with w(pi, a) = +, pi ∈ assumptions or pi �∈ assumptions and pi ∈ R, and
(2) for all ei with w(ei, a) = −, pi �∈ assumptions and pi �∈ R or pi ∈ assumptions.

The acceptance conditions of statement nodes are directly derived from the proof
standards for the propositions as specified by the function standard. Let m be a statement
node, s the proof standard associated to the corresponding proposition via standard. We
have to distinguish the 5 different cases (we let max� = 0; to avoid repetitions, we attach
numbers in brackets to the conditions and use those instead of the conditions):

s = se: Cm(R) = in iff [1] for some r ∈ R, w(r,m) = (+, n).
s = pe: Cm(R) = in iff [1] and

[2] max{n � t ∈ R,w(t,m) = (+, n)} >max{n � t ∈ R,w(t,m) = (−, n)}.
s = ce: Cm(R) = in iff [1] and [2] and

[3] max{n � t ∈ R,w(t,m) = (+, n)} > α and
[4] max{n � t ∈ R,w(t,m) = (+, n)} −max{n � t ∈ R,w(t,m) = (−, n)} > β.

s = bd: Cm(R) = in iff [1] and [2] and [3] and [4] and
[5] max{n � t ∈ R,w(t,m) = (−, n)} < γ

s = dv: Cm(R) = in iff [1] and [6] for no t ∈ R, w(t,m) = (−, n).
This concludes our translation. One may observe that, since cycles are not allowed

in Carneades, the resulting ADF is acyclic. For such ADFs the semantics we presented
earlier coincide:

Proposition 1. Let the ADF D = (S,L,C) be acyclic. Then D has a single preferred

model which coincides with the single stable model and with the well-founded model.



Proof (sketch): Since D is acyclic, we can show by induction on the number of elements
in S that the well-founded model of D, WF (D), is complete in the sense that, for each
s ∈ S, s �∈ WF (D) implies s ∈ E′, where (WF (D),E′) is the least fixpoint of ΓD.
WF (D) is thus the single (two-valued) model of D. Since D has no cycles, there can
be no self-supporting links and the least model of the reduct DWF (D) coincides with
WF (D). WF (D) is thus a stable model. Since stable models are preferred models, the
set of preferred models cannot be empty. We can show, by induction on the number of
iterations of the fixpoint operator ΓD, that the well-founded model is a subset of each
preferred model. A similar proof shows that, if (WF (D),E′) is the least fixpoint of ΓD,
then no element in E′ can be contained in any preferred model of D. Thus, WF (D) is
also the single preferred model of D. ✷

The following result shows that the translation actually preserves the meaning of a
CAES.

Proposition 2. Let S = �arguments, assumptions, weights, standard� be a CAES,

ADF (S) = (S,L,C) the dialectical framework resulting from translating S as defined

above. The following holds:

1. An argument a ∈ arguments is applicable in S iff the corresponding argument

node a ∈ S is contained in the well-founded (and thus the single preferred and

the single stable) model of ADF (S).
2. A proposition p is acceptable in S iff the corresponding statement node p ∈ S

is is contained in the well-founded (and thus the single preferred and the single

stable) model of ADF (S).
Proof (sketch): We prove the proposition by induction on the number n of arguments
in S . For n = 0 the result is obvious: there is neither an applicable argument nor an
acceptable proposition in S , and since ADF (S) is empty, we neither have an argument
nor a statement node in the well-founded model of ADF (S), denoted WF (ADF (S)).

Now assume the result holds for n arguments and consider a system with n + 1
arguments. Since arguments are acyclic, there must be an argument a = �P,E, c� such
that c does not appear in the premises or exceptions of any other argument in S . If we
disregard this argument we obtain a CAES S ′ for which, by induction hypothesis, the
proposition holds. For a CAES S∗, let App(S∗) denote the set of applicable arguments
in S∗, Acc(S∗) the set of acceptable nodes. Since neither applicability of arguments
nor acceptability of propositions in S ′ depends on c there are only two cases: either
App(S) = App(S′) ∪ {a} , or App(S) = App(S′). Furthermore, since the acceptability
conditions of nodes in ADF (S ′) do not depend on c, WF (ADF (S ′)) is contained
in WF (ADF (S ′)). Now, since premises and exceptions of a are in Acc(S′) iff they
are in the well-founded model of WF (ADF (S ′)), and since the acceptance condition
for a exactly mirrors the definition of applicability, we have a ∈ WF (ADF (S)) iff
a ∈ App(S). A similar argument shows that c ∈ Acc(S) iff c ∈WF (ADF (S)). ✷

So far we have shown that a reconstruction of an acyclic CAES S as an ADF
ADF (S) is indeed possible. Our results also explain why the different Dung semantics
do not show up in Carneades: the differences simply do not matter. However, the real
advantage of our translation is that we can now lift the restriction of acyclicity, and then,
of course, the different semantics do matter. Nothing in our translation hinges on the fact
that the set of Carneades arguments is acyclic. Indeed, cycles in the set of arguments of



S will lead to cycles in ADF (S), yet these cycles are handled - in different ways - by
the available semantics of ADFs.

By a generalized argument evaluation stucture (GAES) we mean a CAES without
the acyclicity restriction for the set of arguments. We define the semantics of GAES as
follows:

Definition 12. Let S = �arguments, assumptions, weights, standard� be a GAES,
ADF (S) = (S,L,C) the dialectical framework resulting from translating S as defined
above.

1. An argument a ∈ arguments is applicable in S under grounded (credulous pre-
ferred, skeptical preferred, credulous stable, skeptical stable) semantics iff a ∈ S
is contained in the well-founded (all preferred, some preferred, all stable, some
stable) model(s) of ADF (S).

2. A proposition p is acceptable in S under grounded (credulous preferred, skeptical
preferred, credulous stable, skeptical stable) semantics iff p ∈ S is contained in
the well-founded (all preferred, some preferred, all stable, some stable) model(s)
of ADF (S).

Example 2. Here is a simple example involving a cycle. Assume you are planning your
vacation. You plan to go to Greece or to Italy, but cannot afford to visit both countries.
Your arguments may thus be:

a1 = ��,{It},Gr�, a2 = ��,{Gr}, It�.
These arguments obviously contain a cycle and thus cannot be handled by Carneades.
Let n1 be the weight of a1, n2 that of a2. The translation yields the ADF shown in Fig. 2.

Gr a1 It

Gr a2 It

(−, n1)

(+, n1) (+, n2)

(−, n2)

−

−
Figure 2. Greece vs. Italy

If we assume that both n1 and n2 are greater than α and β, and that further γ > 0, then the
outcome is actually independent of the proof standard chosen for the statement nodes.
We get 2 stable models, namely M1 = {a1,Gr} and M2 = {a2, It}. These models are
also the only preferred models. Thus both a1 and a2 are applicable under credulous stable
and preferred semantics, but neither under skeptical stable nor under skeptical preferred
semantics. Similarly, both Gr and It are acceptable under credulous stable and preferred
semantics, but neither under skeptical stable nor under skeptical preferred semantics. The
well-founded model is empty.



The approach presented here differs significantly from attempts to model proof stan-
dards using different Dung semantics, such as [1]. Although the various Dung semantics
exhibit different degrees of cautiousness, we have doubts about using these different se-
mantics as a basis for modeling proof standards. First of all, unless modularized variants
of argumentation frameworks are used, as in [6] or [3], a chosen semantics is global and
doesn’t allow different proof standards to be applied to different issues within a single
argumentation framework. More importantly, we doubt the various Dung semantics cap-
ture the intuitive meanings of legal proof standards. (For a detailed discussion see [9]).
Our approach uses proof standards and Dung semantics for different purposes: proof
standards are used to aggregate and accrue pro and con arguments about an issue; Dung
semantics provide different ways to resolve cyclic arguments.

5. Conclusions

In this paper we have shown that Carneades argument evaluation structures can be re-
constructed as abstract dialectical frameworks. This has several benefits, both from the
point of view of ADFs and from the point of view of Carneades.

1. It shows that ADFs not only generalize Dung argumentation frameworks -
which have been the starting point for their development. They also generalize
Carneades argument evaluation structures. This provides evidence that the ADF
framework is indeed a useful tool in the theory of argumentation.

2. It clarifies the relationship between Carneades and Dung AFs, showing that both
are instances of ADFs. It thus helps to put Carneades on an equally solid formal
foundation.

3. Finally, as we have seen, it allows us to lift the restriction of Carneades to acyclic
argument structures.
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