
The Argument Construction Set —

A Constructive Approach to Legal Expert Systems

Thomas F. Gordon
German Research Center for Computer Science
Sankt Augustin, Federal Republic of Germany

Abstract

Usually, legal expert systems are conceived as rule-based systems for sub-
suming the facts of a case under the general rules of some substantive area
of law. In such systems, the role of the lawyer-user is reduced to that of an-
swering questions about the facts of the case. The Imperial College expert
system for the British Nationality Act is perhaps the most familiar system
of this kind. The guiding view of jurisprudence in such systems is that the
substantive law of some field can be adequately represented as a set of rules
and that deduction is the central task of legal decision making. There is an
opposing view which asserts that deduction, although important, plays only a
secondary role and that the principle task of a lawyer when analyzing a case
is the construction of the theory of the law and facts from which the legal
conclusions deductively follow. In this paper, we describe the architecture
of a software system, called the Argument Construction Set, which is a first
attempt to support this second, theory construction view of legal decision
making. The system does not depend on the existence of clear legal rules
and applies Artificial Intelligence ideas concerning reason maintenance and
nonmonontonic reasoning.

1 Introduction

A popular view of the law is that it is a system of rules and that the decision of legal
cases is to a large extent a question of applying the rules of law to the facts of the
case, in a deductive fashion. This view stresses the role of deduction in legal decision
making, and ignores a variety of issues which have great practical and philosophical
importance, such as determining whether or not the general terms of the law are
satisfied by the events of the case, or deciding how to interpret the variety of sources
of law, such as statutes and cases, in order to arrive at a representation which is
amenable to some form of deduction. It also neglects the fact that logics are human
inventions; there is not one logic, but arbitrarily many, and it is not at all obvious
which, if any, of the currently known systems of logic are suitable for this task.

The old issue about just what role logic plays, or should play, in legal decision
making is of current interest because of the new technologies arising out of the field
of Artificial Intelligence (AI), especially expert systems. So far as I am aware, there
is still no commercially successful expert system (deserving the name) in the field
of law, so this discussion is still very much academic. There have been a number
of attempts to build expert systems in the law, such as [McCarty 77, Sergot 86,
Susskind 87], and not surprisingly, the whole enterprise has also begun to attract its
critics [Leith 85]. Most programming environments for constructing expert systems
allow knowledge about a field to be represented as a set of rules, where the exact
nature of these rules varies a great deal. For those who consider the law to be a

1

system of rules, the idea of building expert systems in law using such environments
is an obvious one.

The controversy regarding the suitability of rule-based systems for building legal
expert systems centers around the feasability of representing the law a set of rules,
as a naive view of the law would suggest. A representative of the camp arguing
that the rule-based approach is appropriate, at least for some useful subset of the
tasks facing lawyers, is Richard Susskind, whose dissertation on expert systems in
law addresses this issue at length. One of Susskind’s central arguments, following
Hart, is that although the law is open-textured, there is a class of clear cases which
can be described adequately by rules [Susskind 87]. The principal opponent of the
rule-based approach for the legal expert systems is Philip Leith, a rule skeptic who
disagrees with Hart, and therefore Susskind, by arguing, essentially, that there is
no method for identifying the clear cases [Leith 85].

The debate about the whether or not there are clear rules will not be of further
interest to us in this paper. Rather than taking sides with one camp or the other,
we will sidestep the issue by describing an alternative architecture for legal expert
systems which does not depend on the existence of clear rules or cases. The basic
idea is due to Fiedler [Fiedler 85], who views legal decision-making as being not
principally a deductive task of applying rules, clear or otherwise, to the facts of
a case, but as a constructive task of designing the facts and rules, in an iterative
fashion, so as to justify the decision. In this conception, the lawyer or judge creates
an argument from the sources of law, such as statutes and reported cases, and the
information available regarding the facts of the case. This argument must satisfy
certain constraints, only one of which is that the decision must deductively follow
from the interpretation of the law adopted.

Fiedler described his architecture in general terms. The main goal of this paper
is to refine these ideas by presenting a software system in which some of them are
realized, the Argument Construction Set (ACS).

It may be thought that a proof checker of some kind for standard logic would be
adequate as a basis for such a system. However, any earnest attempt to formulate
the relevant law in first-order predicate logic would often, if not usually, make
it impossible to derive the intended decision of the case because of the lack of
information about the facts of the case sufficient to rule out all known exceptions
to the rules being applied. In the last ten years or so, a great deal of effort in AI
has gone into solving the problem of reasoning with incomplete information. For
technical reasons, the subject has come to be called “nonmonotonic reasoning”. The
problem has by no means been solved, but the issues have become much clearer and
a variety of approaches, some of them promising, have appeared. The Argument
Construction Set is based on one of these approaches, called “reason maintenance”.

In the rest of this paper, first the deductive view of legal reasoning is described
in greater detail; then, Fiedler’s constructive conception of legal decision making
is constrasted with the deductive view; next, the arguments for nonstandard logics
supporting nonmonotonic reasoning in the context of legal decision making are out-
lined, and the principal AI approaches to nonmonotonic reasoning are introduced;
finally, I describe the design of the Argument Construction Set and the state of the
current prototype.

2 Deductive View of Legal Reasoning

Before describing the constructive view in detail, for the purpose of comparison
let me first outline more precisely the more conventional deductive conception of
legal decision making and its realization in legal expert systems. The situation of
interest, according to this deductive view, involves a lawyer, who may be a judge,

2

faced with

1. a body of law,

2. the facts of a particular case, and

3. an issue to be decided.

The legitimate question as to where these elements come from is not addressed, at
least the issues raised by this question are not considered to be of central importance
to an explication of the nature of legal decision making. In any case, the deductive
view concerns itself only with those issues which arise after these elements have
been identified and stated.

Given these three components, the task of the lawyer, according to this view, is
to decide the issue by formulating a proposition for the issue and then determining
in some fashion whether the proposition or its negation deductively follows from
the law and facts.

Critics of the deductive view sometimes claim that this task is a simple one and
that the truly difficult tasks involved in deciding legal cases are elsewhere. While
there are indeed difficult tasks ignored by the deductive view, some of which will
be discussed below, the claim that deduction itself is simple is unsupported. One
relatively simple logic is propositional logic. It is of limited expressiveness, but
offers the advantage of decidability , that is, procedures exist for deciding whether
some proposition is entailed by some set of other propositions. But decidability
alone does not guarantee that the procedures available are efficient enough to be
useful in practice. This is unfortunately the case for propositional logic: it has been
proven that no efficient procedure for propositional entailment exists. (Technically
speaking, propositional entailment is NP complete.) The situation just gets worse
with more expressive logics, such as first-order predicate logic, which is not even
decidable. That is, no procedure guaranteed to terminate, of any complexity, exists
for determining whether one formula is logically entailed by a set of other first-order
formulas. These considerations are not intended to suggest that these logics are not
useful, just that the task of finding logical proofs, even after the the law and facts
have been expressed as a set of formulas in the logic, is not a trivial one.

There are other problems, of course. If the law and facts are incomplete, in both
formal and informal senses of the word, then it may be that neither the proposition
nor its negation is entailed by them. For example, if the law states that vehicles
are not allowed in the park, and the facts are that a bicycle was in the park, it
does not follow logically that the bicycle was not allowed in the park, as there is no
explicit statement in the law, as it has been stated, to the effect that all bicycles
are vehicles. This is Hart’s example of open-textured concepts and illustrates the
problem of subsumption, i.e. whether a specific term, in this case “bicycle” is
subsumed by a more general one, here “vehicle”.

Despite such difficulties, there have been a variety of attempts to build proto-
type legal expert systems based on this deductive view of legal decision making
[McCarty 77, Sergot 86, Susskind 87]. Usually, the designers of these systems are
aware of such problems, but claim that the systems are potentially useful tools for
lawyers despite such qualifying limitations. No serious researchers today claim that
such deductive systems can be used for autonomously deciding legal issues. Rather,
it is only claimed that such systems can be useful for a preliminary analysis of cases
by sophisticated users who are aware of the dangers and limitations of the method.

At an abstract level of description, these tools for constructing legal expert
systems share a common architecture. With such systems, there are two types
of users: the expert lawyer who builds a “knowledge base” for some specific and
technical area of law, and the non-expert lawyer, who applies the knowledge base

3

to analyze particular legal cases. The software system includes components for
building and testing knowledge bases, to be used by the expert lawyer, and tools for
the nonexpert, such as a dialog manager which prompts the non-expert for the facts
of the case, an inference engine which selects and applies rules, and an explanation
module which explains how conclusions were reached, usually by displaying the rules
which were applied in some more or less digestible fashion.

Notice that this architecture does not exactly mirror the description of deductive
legal reasoning outlined above. The facts of the case need not have been illicted
before the system attempts to find a “proof” of the proposition in question. Ques-
tions regarding the facts are posed to the user during the attempt to find a proof.
There are also differences between the meaning of “rule” in the expert systems
context and “inference rule”, as logicians use the term. In logic, inference rules are
domain-independent. In expert systems, the domain expert describes his knowledge
by writing rules tailored to his subject. From a logical perspective, there is no dif-
ference between what are called “rules” and “facts” in the expert systems context:
they are both “formulas” representing sentences. This does not mean that expert
systems do not use logical inference (although in fact most expert systems use ad
hoc methods with no clear relationship to existing formal systems of logic); rather,
in the expert systems community a terminology has developed which is somewhat
at odds with the terminology used by logicians.

3 Constructive View of Legal Reasoning

The expert systems architecture described in the previous section was not devel-
oped for the explicit purpose of building expert systems in law. Initially, expert
systems were developed for a specific field of application. Later, the basic method-
ology and software tools were abstracted from these complete applications with the
goal of developing domain-independent programming environments, usually called
“shells”, for building applications in arbitrary domains. Most attempts to build
legal expert systems used one of these off-the-shelf programming environments,
e.g. [McCarty 77, Sergot 86]. At the same time, however, there have been at-
tempts to develop knowledge representation languages, i.e. programming languages
for expert systems, tailored specifically to the problem of representing the law
[Stamper 80, deBessonet 84, Gordon 87]. Although these languages are intended
for representing the law, with each aimed at some particular problem of legal knowl-
edge representation, the overall architecture of deductive expert systems described
remained the same.

To my knowledge, Fiedler [Fiedler 85] was the first to propose a completely dif-
ferent architecture for legal expert systems, an architecture designed to approximate
more closely the way lawyers actually construct legal arguments. Fiedler describes
legal decision making as a “modelling” process:

In effect, the task of the judge essentially includes the choice, shaping
and logical construction of the appropriate legal rules as well as the
pertinent statements of facts in mutual interdependence. It is true that
the resulting fabric of the judgment and its reasons has the function
of deductively connecting the decision to the rules of law and the facts
of the case. Nevertheless the process of decision-making is not reduced
to the application of deductive logic to given premises, but essentially
consists in constructing a logical fabric, which at the same time has the
qualities of an adequate model and a stringent deduction. In terms of
modern methodology, judicial decision-making will have to be qualified
as a process of model-construction or “modelling”.

4

Fiedler then goes on to describe the features legal expert systems should have in
order to support this “modelling” process, and draws an analogy between the type of
system he proposes and Computer-Aided Design (CAD) systems. His requirements
list is quite comprehensive, if abstract, and includes components for assisting the
creation of natural language texts documenting the arguments constructed, such as
briefs and judgments.

The role of deduction in Fiedler’s conception of legal reasoning is principally one
of justifying decisions, after they have been made, at least tentatively, rather than
to provide a method for reaching or discovering decisions. That is, the decision must
follow logically from the rules of law and the facts of the case, but the rules and
facts are not present from the beginning; they are composed by the lawyer during
his construction of an argument justifying the decision. The rules are formed by
interpreting, and reinterpreting, the various sources of law, such as reported cases,
and the facts arise out of the interpretation and discovery of evidence. The choice
of terminology for stating the facts and the rules are mutually dependent on one
another. The law cannot be formulated without considering the facts, and the
facts cannot be stated without considering the applicable law. Logical deduction is
principally a constraint on the structure of the resulting argument.

This does not suggest that deduction cannot play an active role in the creation
of arguments. Once the law has been tentatively formulated as a set of rules, these
rules can be used by a deductive reasoner to help illicit the facts necessary to prove
some goal proposition. But if the proposition cannot be proved, it may be that
it is the rules which need to be reformulated, by reinterpreting the legal sources.
When rules are reformulated, the expert system should be able to assist the lawyer
in withdrawing just those conclusions which depend on the previous formulation.

That legal arguments must be logical is not controversial; but this basic con-
straint of rationality is of course not sufficient justification for a legal decision.
Justice has other demands as well, such as the principle that like cases should be
treated alike, which guides the treatment of judicial precedents. There might be
software tools that one can imagine which would assist lawyers in making deci-
sions which are justifable not only on logical grounds, but on broader grounds as
well. Fiedler’s proposed architecture for legal expert systems does not eliminate the
possibility of such tools, but does not explictly require them either.

In the usual conception of legal expert systems, there are two classes of users:
the expert who builds the knowledge base and the lay user who applies the knowl-
edge base to some particular problem. What is the role of the expert lawyer in
Fiedler’s constructive view of legal decision making? The question concerns the
role of secondary sources of law, such as case books, treatises and commentaries, in
legal decision making. These secondary sources are compilations of the knowledge
of experts in legal specialities. In contrast to the knowledge bases constructed by
experts for use in conventional expert systems, however, theses secondary sources
of law are not self applying; the lawyer analysing some case must interpret these
secondary sources just as he interprets the primary sources, the statutes and pub-
lished case reports. Secondary sources provide an additional source of material to
aid the process of interpretation, but do not relieve the decision-making lawyer from
his responsibility of interpretation.

In legal expert systems based on this constructive model of legal decision making,
knowledge bases could be prepared in advance by legal experts, just as is done in
conventional expert systems based on the deductive model, but one must be careful
to design the system so as to prevent the experts from usurping the responsibility of
the lawyer deciding the case for the ultimate content of the model of the law used.
The non-expert lawyer using the constructive system to decide some case must be
held responsible for the content of the knowledge base, for the formulation of the
rules used to reach the decision. The non-expert should not be able to delegate

5

this responsibility to an expert. To the extent that the expert system encourages
or permits the non-expert lawyer to delegate responsibility for interpreting and
understanding the original legal sources to an expert, the difference between the
constructive and deductive views is diminished.

There are two interests to be balanced here:

1. The desire to compile knowledge bases in advance which may be applied re-
peatedly to many different cases. Experts can spend their careers developing
and refining such knowledge bases, saving end users time and effort and pro-
viding them with the benefit of the special insight and knowledge which can
only be obtained after intensive study over a period of years; and

2. The importance of reinterpreting the law in light of the events of new cases,
events which may not have been forseen by either the judicial or legislative
bodies, or by the experts who interpret primary sources of law.

In view of the first of these goals, it would be unreasonable to simply forbid
precompiled knowledge bases from being used in expert systems. There is a middle
ground, however, between an “expert system” which does not support the use of
knowledge bases constructed by experts, and expert systems in which such knowl-
edge bases are self applying: the system could be designed so as to allow the lawyer
deciding the case to easily modify knowledge bases prepared by experts. In ad-
dition, the explanation module should be constructed so as to not merely explain
which rules were applied, but to explain as well why the rule was formulated the
way it was. That is, information about the primary sources of law relied on in
formulating the rules should be included, together with whatever other information
is necessary to understand just why the expert chose this representation of the law.
As an additional safety guard, the system could require the end user to review and
explicitly confirm that he is in agreement with the formulation of a rule, before it
is applied.

Most expert systems perform diagnostic tasks; given information about some
object, it is their job to classify the object given some hierarchy of terms or to
identify certain of the objects properties. For example, expert systems for medical
diagnosis are provided with information about the symptoms of a patient and then
attempt to identify the particular illness or illnesses causing the symptoms. Legal
expert systems based on the deductive model of the law can be considered to be of
this type: given information about the facts of the case, they apply a representation
of the law in order to classify the operative facts of the case according to the
general terms of the law. Not all expert systems are diagnostic systems, however.
Another class of expert systems perform configuration tasks. For example, one
of the most commercially successful expert systems, XCON, routinely configures
Digital Equipment Corporation VAX minicomputers so as to meet the requirements
of DEC’s customers. Legal expert systems of the type proposed here, based on the
constructive view of legal decision-making, belong to this configuration class; they
would help “configure” arguments so as to meet, at least, the formal requirements
of justice.

As mentioned above, Fiedler drew an analogy between the type of legal expert
system he is proposing and Computer-Aided Design (CAD). This analogy is helpful
only to a certain extent. CAD systems are not usually knowledge-based systems.
They do not usually apply Artificial Intelligence methods of knowledge representa-
tion and inference. If the system proposed were to be limited to a kind of proof
checking function, if it would not support the use of knowledge bases prepared by
experts in advance, then the CAD analogy would be more accurate. But such a sys-
tem could not properly be called an expert system, as it would not contain expert
knowledge, except in the limited sense that it would implicitly contain knowlege

6

about logic and deduction. A CAD system, however, can be a knowledge-based or
expert system, and there does seem to be a tendency for CAD to be developing in
this direction, incorporating more and more AI technology. The two technologies,
CAD and expert systems, are not incompatible.

4 Defeasible Reasoning

Fiedler’s theory of legal reasoning as a process of argument construction, as I have
described it above, says nothing about the form such arguments have, or should
have. In his proposed architecture for legal expert systems, however, he does state
that:

Knowledge representation and inference mechanisms should provide for
specific customs of legal interpretation and specific strategies of legal
reasoning. (e.g., modularization of the rule base functionally similar to
law, which would also enhance the understandability and modifiability
of the system ... inference mechanisms incorporating methods of legal
heuristics.)

This goal speaks against the use of standard propositional or predicate logic for
expressing legal arguments. Although the bulk of the jurisprudence literature about
the role of logic in the law seems to assume that, when logic plays a role at all in
legal reasoning, this role is adequately filled by a standard logic, AI has some new
ideas to contribute to this theme, arising out of attempts to understand common
sense reasoning.

Standard logic is monotonic, in the following sense: if a proposition is entailed by
a set of propositions, then it is also entailed by every superset of the initial set. That
is, no additional information will allow previous conclusions to be retracted. There
is a flip side to this: only those propositions which are necessarily true given that
the premises are true can be deduced. That is, standard logic offers no mechanism
for prefering one proposition to another if neither proposition is necessarily true
given the premises.

Contrast the monotonicity of standard logic with common sense reasoning. In
the context of common sense reasoning, truth is not the principal goal, but rational,
considered decisions. Decision-making occurs in time and space and is subject to
limited resources, in particular limited information. When faced with a decision
to make, if a relevant proposition cannot be deduced from available information,
then other forms of reasoning must be applied. If the proposition is usually true in
contexts similar to the current one, then an agent may assume it to be true in this
case as well. That is, some form of probabilistic reasoning may take place. Even if
the proposition is probably true, however, an agent may choose to believe that it
is not true, as he must consider the consequences of making a wrong decision. The
relative risks of error must be weighed.

Legal reasoning is nonmonotonic, and the traditional forms of expressing legal
rules is designed to support this kind of reasoning. Laws are not usually stated
as logical propositions, although they bear a surface resemblance to propositions
because of their use of such key words as ‘if’, ‘and’, ‘or’, etc. Rather, they are
expressed as general principles, which are then qualified and refined in other state-
ments. If these principles can be viewed as rules, such rules are subject to implicit
exceptions which are made explicit, if at all, in other sections of the legal text.

For example, according to BGB §108 of the German civil code, contracts are
valid. But then §108 goes on to say that contracts with minors are not valid. Later
we read that contracts with minors which have been ratified by a guardian of the
minor are valid. Hart’s famous example for the open texture of legal concepts also

7

demonstrates this aspect of legal reasoning. The general rule is that vehicles are
not allowed in the park. When a court decides that baby carriages, however, are
not excluded from the park by this law, it need not argue that baby carriages are
not vehicles. In this case the rule is subject to an implicit exception; indeed an
exception that is nowhere made explicit in the text of the statute.

In [Gordon 88] I discuss the importance of nonmonotonicity for legal reasoning.
Its importance stems from the normative and conflict resolution goals of law. Briefly,

1. The normative goal of law requires that average persons, in particular non-
lawyers, be able to learn and apply the law. General rules, subject to ex-
ceptions, are shorter, simpler and easier to learn and apply than complex,
detailed statements of the law. Exceptions can be learned, incrementally, as
the need arises.

2. Procedures for resolving civil disputes according to law must be sensitive to
the economic value of resolution to the parties involved. There is no simple
correlation between the complexity of the legal issues raised by a case and the
value of resolution. Burden of proof rules provide a means of reducing the
cost of judicial decision-making by permitting facts to be assumed without
proof. It is left to the parties to decide which issues to raise, based on their
own evaluation of their interests and taking into consideration the potential
costs of proving some point. Burden of proof rules are nonmontonic inference
procedures, in the sense that they permit propositions to be accepted without
proof. The use of general rules with exceptions, is one way of allocating burden
of proof.

I have been arguing that nonmonotonicity is required for legal expert systems;
but what relationship does nonmonotonic reasoning have to logic, and how can
one go about adding nonmonotonicity to expert systems? It could be argued that
nonmonotonic reasoning has little to do with logic, by restricting the conception of
consequence to the standard notion in which a proposition is entailed by a set of
axioms only if it is necessarily true when the axioms are true. From this point of
view, logical inference is just one reasoning process used by decison-making agents,
among others. But a principled conception of rationality and, in the legal context,
of justification, requires that these “extra-logical” processes be specified clearly
enough so as to be able to determine, in some way, whether a decision is rational
(or a judgment justified) when nonmonotonic inferences have been made. If this
can be done, then the usual notion of consequence can be modified so as to include
these additional factors and considerations. There are many nonstandard logics,
each with its own nonstandard notion of consequence or entailment, so there is
nothing especially unusal about this idea. Not all AI approaches to nonmonotonic
reasoning take this semantic approach, however. In fact, most of the approaches
have been ad hoc procedural approaches in which it is unclear what relation they
have to standard logical notions such as entailment.

There have been a great many approaches to nonmonotonic reasoning proposed
in AI. Nonmonotonic reasoning is a central requirement for many AI tasks. Unfor-
tunately, this is one area where theory and practice are still quite far apart. Great
progress has recently been made on both fronts, but the practical approaches need
to be cleaned up by the theorists, and the promising theories still need efficient
proof procedures and implementations. For our purposes here, a brief description
of the most significant work in the field will have to suffice. See [Genesereth 87]
or [Brewka 87] for introductions to the field, and [Ginsberg 87] for a collection of
historically important papers on the subject.

8

4.1 Formal Approaches to Nonmonotonic Reasoning

On the theoretical side, the most discussed approaches presently include circum-
scription, default logic and autoepistemic logic. None of these approaches is easy to
explain or to understand unless one has a solid foundation in mathematical logic;
but let me try at to convey a feel for each of these approaches.

4.1.1 Circumscription

Circumscription was first proposed by John McCarthy in 1980 [McCarthy 80]. In
the meantime, a variety of forms of circumscription have been developed, so it no
longer makes sense to talk about the circumscription method for nonmonotonic
reasoning. The central idea of all versions is the same: given a set of first-order
predicate logic formulas representing what is known about the domain of interest,
add a second-order formula to minimize the extensions of certain selected predicates.
Unfortunately, to explain this idea adequately would require an excursion into model
theory, which would be too envolved for our purposes here. Perhaps an example
will help. According to German law, contracts are presumed to be valid. Contracts
with minors, however, are presumed not to be valid. These two rules could be
represented in first-order logic as:

∀x . contract(x) ∧ ¬exceptional(x) → valid(x)

∀x . contract with minor(x) → exceptional(x)

Given only these two formulas, it is not possible to show that a contract is valid if
it cannot be explicitly shown that the contract is not exceptional, which is not what
is wanted. How can we arrange things so that a contract can be presumed to be valid
if there is no information as to whether or not it is exceptional? Circumscription
achieves this with a second-order axiom stating, in effect, that the only things which
are exceptional are those which must be given the axioms.

A proof procedure for full circumscription is not possible because of the second-
order axiom; but special cases of circumscription have been discovered in which the
second-order axiom can be reduced to a first-order one, permitting existing theorem
proving techniques to be applied. Another serious problem with circumscription is
the difficulty in selecting the second-order axiom. The axiom to chose depends on
the intentions of the user, and methods need to be discovered for assisting users in
designing the axiom, depending on their goals.

Circumscription is the most general of the minimization approaches to non-
monotonic reasoning. The closed-world assumption is another, more specialized,
approach to nonmonotonic reasoning based on the minimization idea. In contrast
to circumscription, however, the closed-world assumption is widely applied, in data
bases and in the logic programming language Prolog, for example. Unfortunately,
the closed-world assumption does not offer enough control over the allocation of
burden of proof to be useful for legal expert systems.

4.1.2 Default Logic

Default logic was created by Raymond Reiter, also in 1980 [Reiter 80]. His ap-
proach is proof theoretical; general rules subject to exceptions are not represented
as formulas within the logic, but as inference rules tailored to the particular theory
of interest. These inference rules for default reasoning have the form:

α : β

γ

which is intended to mean

9

If α is true and β is consistent with everything else that is true, then γ
is true.

Using this approach, the contracts example could be represented

contract(x) : ¬contract with minor(x)
valid(x)

contract with minor(x) : ¬ratied(x)
¬valid(x)

These are the default inference rules. The known facts of the case would be
represented in the usual way as a set of logical formulas. If all we know is that a
is a contract, then the first default rule could be used to deduce that a is valid, as
¬contract with minor(x) is consistent with what is known.

Default Logic has attracted just about as much attention as circumscription;
there are now large number of theoretical results concerning it. Reiter’s formulation
of Default Logic was proof theoretical, but Etherington gave it a model theoretic
semantics [Etherington 87]. Konolige, in an award winning paper [Konolige 87]
proved the equivalence of Default Logic and Autoepistemic Logic, which will be
discussed next.

An issue arises in the context of Default Logic which is of general importance for
nonmonotonic reasoning, the multiple extension problem. An extension is, roughly
speaking, the original set of logical formulas completed with all other formulas
which can be derived by the ordinary inference rules of predicate logic together
with applications of the theory specific default rules. However, as default rules can
interact with one another, it is possible for a default theory to have more than one
extension. For example, there could be extensions in which we conclude that some
contract is valid, and other extensions in which just the opposite is concluded. In
such cases, the usual approach is to say that any of these extensions is an acceptable
set of beliefs. An agent is free to use extralogical means to prefer one such extension
to another.

Given that default theories may have multiple extensions, would Default Logic
be appropriate for legal reasoning? Put another way, does the law, or should the law,
uniquely determine a judge’s decision? Or does the law merely constrain judicial
decisions to some set of justifiable alternatives, among which judges are free to
exercise their discretion? If the first view is adhered to, Default Logic would not be
appropriate for legal reasoning. An approach to default reasoning for which there
is always exactly one permissable extension would be necessary. It is not clear to
me at the moment which of these alternatives is preferable.

4.1.3 Autoepistemic Logic

There have been a variety of modal logic approaches to nonmonotonic reasoning.
One of the first was NML I, by McDermott and Doyle [McDermott 80]. NML I
and its successor, NML II [McDermott 82] are both said to have suffered from a
variety of sematical difficulties; they did not quite capture the intended intuitions
about nonmonotonic reasoing. The first modal approach to gain wide recognition
is Moore’s Autoepistemic Logic [Moore 85].

In modal logic, there are ‘operators’ which make statements about statements.
For example, the modal operator M is usually interpreted to mean possible. If p is a
sentence meaning I will inherit a million dollors, then Mp is intended to mean that
it is possible that I will inherit a million dollars. Modal operators can be applied to
sentences containing modal operators, so e.g. sentences of the type MMp, meaning
it is possible that it is possible p are allowed. Note that in modal logic, just as

10

in standard predicate logic but unlike Default Logic, knowledge about a domain is
represented entirely with logical formulas.

Autoepistemic logic uses primarily another modal operator, L, which is usually
interpreted to mean necessary , but is reinterpreted in the context of nonmonotonic
reasoning to mean known, or believed . To represent the contracts example using
Autoepistemic Logic, one could write:

∀x . contract(x) ∧ ¬L contract with minor(x) → valid(x).

This formula is intended to mean that all contracts which are not known to be
contracts with minors are valid.

Autoepistemic logic is so named because it is intended to model the reasoning of
an agent about his own beliefs. Moore’s standard example of such reasoning involves
whether or not he has a brother. He concludes he does not have a brother, because
if he did he would know it. Moore contrasts this kind of default reasoning with
typicality default reasoning. The classic AI example for nonmonotonic reasoning
concerns whether some bird flies. Knowing nothing else about the bird, it is assumed
to be able to fly because birds typically fly. Moore argues that these two kinds of
nonmonotonic reasoning may need to be handled differently. This raises the question
whether still other types of nonmonotonic reasoning are required in other contexts.
In the law, for example, defendants in criminal cases are presumed innocent until
proven quilty, even though defendants are typically guilty. Thus, typicality is not
the basis for nonmonotonicity here. Neither does autoepistemic reasoning seem
to being playing a role. We do not presume the defendant to be innocent on the
grounds that if he were guilty, we would know it. Rather, the consequences of a
wrong decision are being balanced here. It is considered worse to punish an innocent
person than not to punish a guilty one.

4.2 Pragmatic Approaches to Nonmonotonic Reasoning

With few exceptions, such as the use of the closed-world assumption in Prolog,
the approaches to nonmonotonic reasoning which are theoretically well understood
have yet to be applied in AI systems. This lack of mature theory, of course, has
not hindered AI engineers from building systems which appear to adequately per-
form tasks requiring nonmonotonic reasoning. Without well developed theories of
nonmonotonic reasoning, however, it is not possible to understand fully just what
it is these systems are doing. Two classes of ad hoc approaches will concern us
here: inheritance hierarchies in frame-based knowledge representation systems, and
reason maintenance systems.

4.2.1 Inheritance Hierarchies

Many, if not most, expert system shells today support knowledge representation
using a combination of rules and so-called objects. Objects of the type meant
here have had a variety of names, such as ‘frames’, ‘units’, and ‘schema’, and each
realization of the basic idea has been somewhat different than the others. In many
systems, for example, a distinction is made between generic objects or classes, and
other objects which are instances of these classes. One feature all these systems
have in common, however, is support for a kind of nonmonotonic reasoning called
default reasoning.

The original motivation for using frames to represent knowledge is due to Minsky
[Minsky 75]. An early implementation of the idea is FRL, by Roberts and Goldstein
[Roberts 77].

Rather than describe concrete systems in detail, let me describe their common
approach to default reasoning in an abstract, system independent fashion. Objects

11

have internal structure; each object has a number of properties. Each of these
properties of an object has a value, which is another object. The properties of an
object are sometimes called slots, and their values fillers. Given a set of objects,
the task of the reasoner is to determine the values of their properties. Some of the
properties are provided by the user; these properties play a role similar to that of
axioms in logic. (Note that one simplification made in these systems is that the
reasoner need not infer the existence of objects; all relevant objects are assumed
to have been asserted by the user.) The values of the remaining properties are
determined in one of two ways: by property inheritance or by procedural attachment .
Only inheritance is of interest to us here, as it is the method which supports a kind
of nonmonotonic reasoning.

To use property inheritance, the objects of the system must be arranged into a
hierarchy , that is the objects must be linked together into a kind of net structure.
The links are directed; they point from one object to another, but not in both
directions. Cyclic links are prohibited; there is never a path along the links from
object to object which leads back to the first object in the path.

Now, given such a network of objects, inheritance can be performed as follows:
the value of some property of an object is determined by following links until an
object is found for which the property has a value. This value is then inherited
by the object for which the value was previously undetermined. This procedure is
nondeterministic, i.e. it doesn’t necessarily result in a unique value for the property,
as there may be a number of different paths through the net from the object to other
objects with values for the property of interest. Each system has its own strategy
for choosing one of the competing values in such cases.

This discussion has been very abstract so far. Let us represent the contracts
example using an inheritance hierarchy. We will distinguish between objects which
represent classes and objects which are instances of classes. There are two classes to
represent: contracts and contracts with minors. The only property we are concerned
with is validity. Let us suppose there are objects representing truth and falsity. By
installing a link from the contracts with minors object to the contracts object, we
can represent that the first is a subclass of the other. Now, the presumption that
contracts are valid can be represented by setting the value of the validity property
of the contracts object to true. If nothing else is done, the contracts with minors
object will inherit this value because of the link from this object to the contracts
object. To prevent this, which we want to do because contracts with minors are
presumed not to be valid, the value of the validity property of this subclass of
contract must be explicity set to false.

To use this system to determine whether some particular contract is valid, an
object representing the contract must be created and installed into the net by
linking it to other objects. If it is known that the object is a contract with a minor,
then it would be linked to the contracts with minors object. The contract would
then inherit the value false for its validity property, as desired. If it is not known
whether one of the parties of the contract is a minor, then the object would be linked
directly to the contracts object, in which case it would inherit the value true for
its validity property. Here we see another limitation of this approach to knowledge
representation; there is no standard method for modifying links. If it later becomes
known that the contract is a contract with a minor, its direct link with the contracts
object would have to be moved.

Default reasoning with inheritance hierarchies can be implemented very effi-
ciently. For this reason principally, perhaps, there have been a number of attempts
to give inheritance hierarchies a formal semantics [Etherington 83, Touretzky 86].

This brief introduction to structured objects and property inheritance will have
to suffice. For more detail about this approach to knowledge representation and
default reasoning see, e.g., Nilsson’s introduction to AI [Nilsson 80]. Winston and

12

Horn’s AI programming book [Winston 84] includes a chapter on implementing
frames in Lisp.

4.2.2 Reason Maintenance Systems

The subject of nonmonotonic logic is concerned with discovering logics which cap-
ture our intuitions about the nature of defeasible reasoning and which have de-
sirable computational properties. Despite this interest in computation, however,
researchers who have taken a logical approach to the problem of nonmonotonic
reasoning have generally not shown interest in the process of reasoning with in-
complete and changing information over time. Rather they have generally focused
their attention on the traditional model-theoretic and proof-theoretic issues of logic.
This traditional approach presumes that one is principally interested in determing
whether some formula is entailed by some set of premises. This is certainly one
problem an agent faces when making decisions, but there are others which need to
be discussed and made explicit. People reason about their world in time. They draw
inferences based on whatever partial information they have at the time, which later
may need to be withdrawn when additional information becomes available. Previ-
ous conclusions are applied to future problems, without having to redo the reasoning
steps which led to them. Ideally, somehow the reasons accepted for believing some-
thing are documented or stored, so that a belief, when called into question, can
be defended by checking whether those reasons are still valid, without having to
rediscover arguments supporting the belief from first principles.

Interestingly, there have been significant efforts within AI to deal with just this
sort of problem. The topic has come to be known as Reason Maintenance and work
in the field has been less theoretical than pragmatic. The principal papers on the
subject describe particular methods for constructing software systems which per-
form reason maintenance. Reinfrank has written a clear and informal introduction
to field [Reinfrank 86]. Again, there is only room here for a quick overview of the
principal approaches, of which there are two: the TMS approach first developed by
Doyle [Doyle 79], and the ATMS approach developed by DeKleer [DeKleer 86a].

The basic service provided by both of these approaches is the mangagement of
dependencies among premises, which are formulas assumed to be true, and other
formulas which have been derived from these premises. For the purpose of reason
maintenance, the logical language in which these formulas are expressed is, surpris-
ingly perhaps, unimportant. The content and structure of the individual formulas
play no role in reason maintenance. Each formula is viewed as an unstructured unit,
comparable to the sentence letters of propositional logic. The formulas which have
been entered into the reason maintenace system (RMS) are called simply nodes;
they in effect loose their role as formulas while reason maintenance is being per-
formed. For this reason, the service offered by a RMS is actually much more general
than suggested by its application to the problem of managing premises and theo-
rems for some logic. A RMS can mangage dependencies among arbitrary pieces of
data.

The structure used to record dependencies is called a justification. This is, of
course, a very technical use of the term “justification” and should not be confused
with its legal meaning, although as we will see there is a connection to be made
between these two uses of the word. There are two types of justifications, monotonic
and nonmonotonic. Following Reinfrank, [Reinfrank 86], let us use a simple notation
for writing down justifications:

(I;O ⇒ n).

Here, n is the node being justified, and I and O are sets of nodes, called, for
historical reasons, the in list and out list , respectively. If there are no nodes in

13

the out list, then the justification is called a monotonic justification, otherwise it is
called a nonmonotonic justification.

To understand what these justifications have to do with nonmonotonic reasoning,
we need a further concept, that of a labelling . At any given point in time, the state
of a reason maintenance system consists of a set of nodes and a set of justifications
for these nodes. Intuitively speaking, the task of the RMS is to determine which
of the propositions represented by the nodes to believe given the current set of
justifications. Technically speaking, the task of the RMS is to attach a label to each
node indicating whether it is currently in (believed) or out (not believed). Again,
the RMS does this without examining the internal structure of the nodes. (This
characterization of reason maintenance is not quite correct in the case of DeKleer’s
ATMS, but is accurate enough for present purposes.)

Given a set of nodes and a set of justifications, how does a RMS go about
determining which nodes to label in and which to label out . The basic idea is to
try to find for each node a justification for which each of the nodes in the in list is
in and each of the nodes in the out list is out . Such a justification is called a valid
justification. Thus, intuitively, a justification can be seen as a kind of rule stating
sufficient reasons for believing the proposition denoted by its conclusion.

The problem with this simple characterization of reason maintenance, of course,
is its circularity. To determine whether some node is in, we must determine whether
other nodes are in or out . How do we break this circle? Part of the answer is that
some of the nodes are marked as being premises, i.e, they are unconditionally in.
Valid justifications need not be sought for premises. (Alternatively, premises can
be marked by asserting justifications with empty in and out lists.)

Premises are only part of the solution to circular arguments, however. What
should be done in the following situation, for example. Suppose there are two
justifications, ({b}; {} ⇒ a) and ({a}; {} ⇒ b). These justifications say, in effect,
that a should be in when b is in, and b should be in when a is in. The RMS
will have to be carefully implemented so as to avoid endless looping in such cases.
Clearly, if there are no further justifications which can be used to support a or b
then they should be both made out .

Although the “correct” labelling in the previous example was fairly clear, how
should a and b be labelled if there are only these two justifications: ({}; {b} ⇒ a)
and ({}; {a} ⇒ b)? These say that a should be in if b is out and vice versa, b should
be in if a is out . The correct solution here depends, of course, on our intentions
and purposes. Reason maintenance systems do have a semantics, in the sense that
there are implementation and algorithm independent specifications of their intended
behavior. But it is unclear which specification or semantics is appropriate here.
The usual approach defines the concept of an admissible labelling for a set of nodes.
When no nonmonotonic justifications are allowed, then there is always exactly one
admissible labelling. When nonmonotonic justifications are supported, and given
the usual semantics of reason maintenance systems, due to Doyle [Doyle 83], there
may be many admissible labellings, or even none. In the example above, either a
or b could be labelled in, but not both. Furthermore, at least one of them must be
labelled in given Doyle’s semantics; they cannot both be left out . Note that this
is just the multiple extensions problem discussed above in the section on Default
Logic, but in another guise.

Reason maintenance would not not differ significantly from the ordinary concep-
tion of theorem proving, if it were not conceived so as to support the incremental
relabelling of nodes. It helps to imagine the reason maintenance system as being a
module or process interacting with the user and other problem solving components
in some larger AI system. Communication with the RMS takes place through a
small protocol of messages or commands which the RMS has been programmed to
evaluate. These commands include asserting new justifications and adding or delet-

14

ing premises. Immediately after modifying the set of justifications and premises in
this way, the task of the RMS is to update the labellings of the nodes. The RMS
does so by reconsidering only those nodes whose label may have been affected by
the action, using the dependency information contained in the justifications to make
this determination. The labelling of other nodes, of course, remain untouched. The
user or problem solving module can then inspect the nodes to discover their current
labelling, i.e. to see if the proposition denoted by some node is currently believed.
The important point here is that inspecting the label of a node is a cheap operation;
it does not trigger any expensive “theorem proving” processes.

Given this functional view of the services offered by a RMS, however, it might be
argued that it is unimportant whether or not the RMS actually updates labels in an
incremental fashion. The user’s only concern is whether or not the RMS is capable
of quickly informing him whether or not a node is in at inspection time. A theorem
prover for a nonmonotonic propositional logic would be adequate for this task, if
only the theorem prover were fast enough (and the number of nodes small enough)
so as to be able to produce a response within a tolerably short period of time. Until
there are efficient theorem provers for some nonmonotonic propositional logic, this
perspective is rather academic. Efficient incremental algorithms for nonmonotonic
reason maintenance already exist, e.g. [Goodwin 87].

DeKleer’s ATMS, meaning Assumption-Based Truth Maintenance System, dif-
fers somewhat from the description of reason maintenance given above, which more
accurately describes systems based on Doyle’s approach. DeKleer distinguishes be-
tween assumptions and premises. Both are unconditional nodes in that they do not
depend on other nodes; but the propositions denoted by premises are expected to
be certainly true whereas the propositions represented by assumptions may or may
not, in fact, be true. The practical importance of this distinction should be clear
shortly.

Rather than labelling each node in or out , the ATMS labels each node with the
set of environments in which the node would be in. An environment is a set of
assumptions. Now the special role of assumptions, in contrast to premises, can be
appreciated. A context is a consistent environment completed with all the other
nodes which can be derived from the assumptions in the environment using the
current justifications. Thus, the principal task of the ATMS is not to determine
whether a node is in or out in some particular context, as in a TMS, but to de-
termine all of the contexts in which a node would be in. An ATMS can handle
multiple contexts simultaneously. To consider multiple contexts using a TMS, the
user must assert and retract premises for each context of interest, and the TMS
must recalculate the labels every time. To determine whether a node is in in some
particular context using an ATMS, it is only necessary to check whether one of the
environments of the label of the node is a subset of the context.

An ATMS could be of interest for constructing legal arguments. The lawyer
would not need to make an early commitment to a particular view of the facts. The
ATMS would inform the lawyer which of the various alternative views of the facts
are capable of supporting some legal conclusion. Rather than having to prove some
particular view of the facts, it would be enough to show that at least one one of
the alternative views of the facts needed to prove some legal conclusion must have
been the case. That is, using the terminology of ATMS, it would be enough to show
that at least one of the environments of the label of the node for the proposition
of interest must be satisfied by the actual context, without having to show exactly
which one of the environments is satisfied.

The disadvantage of DeKleer’s basic ATMS is that it does not support nonmono-
tonic justifications. Belief in a proposition cannot be conditioned upon disbelief
in some other propositon. As the principal reason for discussing reason mainte-
nace here is to review various approaches to nonmonotonic reasoning, our discus-

15

sion of the basic ATMS is somewhat out of place. Various methods for extending
the ATMS so as to support nonmonotonic reasoning have been proposed, however
[DeKleer 86b, Junker 88].

5 The Argument Construction Set

The Argument Construction Set (ACS) is the latest in a series of prototype expert
system shells developed at the German Research Institute for Mathematics and Data
Processing (GMD) for building legal expert systems. The previous system, Oblog-2
[Gordon87], was a hybrid knowledge representation system combining a Prolog-
like rule language with taxonomic hierarchies for types and attributes. Rules were
associated with types and nonmonotonic reasoning was supported in a way similar
to property inheritance in frame-based systems, as discussed above in the section
on inheritance hierarchies. Oblog suffered from a number of difficulties:

1. The terminological component could not infer that one type was a subtype
of another type, as is usual for such reasoners. Rather, type (and attribute)
relations had to be explicitly asserted by the user.

2. To assert exceptions to rules, new types had to be introduced into the the
type hierarchy. These types tended to be rather artifical; they often did
not represent conventional terms of the application domain. (For example,
there would be a type for contracts with minors, even though, “contract-
with-minor” is not a term of art in contracts law.)

3. As in Prolog, solutions to goals were not stored. If the same goal were later
encountered, Oblog would begin by again applying the most general rules first,
even though it had previously been discovered that some exception applies.

4. Oblog did not have a negation operator. New attributes had to be introduced
to express the negation of existing attributes. This is a problem Oblog in-
herited from Prolog. Although Oblog’s rule language was based on Prolog,
the special kind of negation used in Prolog was not adopted, as it depends on
there being complete information about the facts of some case. (Technically
speaking, in legal reasoning the closed world assumption cannot be made.)

5. Finally, Oblog was based on the deductive model of legal reasoning. It did
not directly support the interactive construction of legal arguments in the way
suggest by Fiedler.

The Argument Construction Set addresses most of these deficiencies. It is a
completely new system and approaches the problem of nonmonotonic reasoning
from another angle. Rather than using the idea of property inheritance, a reason
maintenance system supporting nonmonotonic justifications has been adopted. This
change has made the object-oriented aspects of Oblog unnecessary. ACS does not
presently include a terminological reasoner, but it in principle could be extended to
include such a component. We have concentrated in this version on the problems of
reason maintenance and supporting the argument construction view of legal decision
making.

ACS can be seen as consisting of the following main components, or modules:

Reason Maintenance Module Our RMS is similar to those in [Doyle79,Goodwin87].
That is, it supports nonmonotonic justifications but, unlike an ATMS, is able
to manage, in ATMS terms, only one context at a time. In contrast to the
usual semantics for an RMS supporting nonmonotonic justifications, however,
a set of justifications in the ACS always has exactly one extension. That is,

16

every node can be uniquely determined to be either in or out , even when
nonmonotonic justifications are present.

Tactical Reasoner A lawyer could use the reason maintenance subsystem of ACS
alone for constructing arguments. However, a tactical reasoner exists for as-
sisting the user in finding new justifications sufficient to make some node
either in or out , as desired. The tactical reasoner is a kind of expert system
in its own right. An expert in some domain can build knowledge bases for this
component, using a rule language similar, again, to Prolog. The task of the
module is to make suggestions to the lawyer regarding interpretations of the
law and facts sufficient to make an argument for or against some proposition.

Dialog and Explanation Manager This module is responsible for directing the
interaction of ACS with the user. It poses questions to the user about the
facts of the case and about whether an interpretation of the law suggested by
the tactical component is acceptable. It is able to explain just why some node
in the reason maintenance module is either in or out , and why a question is
being asked. Finally, the dialog manager provides tools for editing the set of
rules used by the tactical component and for asserting, retracting or modifying
the justifications used by reason maintenance system.

At the highest level, ACS assists the user in constructing two kinds of objects:
1) a set of justifications for various propositions regarding some particular case or
set of facts, and 2) a set of rules representing interpretations of some area of law.
These two objects are stored in separate files as cases and models. Any number
of models can be used by the tactical component to assist the user in constructing
arguments for a case. Note that arguments as such are not represented explicitly;
they are implicit in the structure of the current set of justifications. The dialog
manager constructs the arguments as it explains why some particular proposition
is believed or not.

A typical session with ACS would be something like this. The goal of the lawyer
is to construct an argument for some proposition. Let’s stay with our standard
example and suppose the lawyer wants to show that some contract, a, is valid. He
would start ACS and then open a new case. A window appears on the monitor for
the case. The justifications for the issues which arise in the case will be appear in
this window. There are menu commands for asserting, retracting and modifying
justifications. The dialog manager assures that justifications have the proper form.
At any point, the user can open another window, called the worksheet, to ask
whether an argument exists supporting some proposition. That is, the worksheet
is used to see whether some node in the reason maintenance net is currently in
or out . There are buttons on the worksheet window for issuing commands to the
dialog manager. There is a button, e.g, for obtaining explanations.

In our example, the user may first assert a new premise, i.e. a justification with
an empty in list and an empty out list , stating that a is a contract. By asserting
this as a premise, the user is in effect saying that he does not expect there to be
any dispute as to whether or not a is a contract, or at least that he is confident
that this can be proved and does not want to be concerned with the details of this
proof at present. After asserting this premise, the user could turn to the worksheet
and command ACS to show whether or not contract(a) is in. ACS would respond,
of course, that it is; if the user then asks why, it would be noted that a premise
for this proposition had been asserted. A user would not actually use ACS in
this way, as it is quite obvious that the premise he just asserted is in; but this
simple example illustrates some of the features of a typical interaction cycle with
the system. Justifications are asserted, retracted or modified, then the worksheet is

17

consulted to see if the desired legal conclusions are in. If not, the cycle is repeated
by first modifying or extending the set of justifications in some way.

Thus, we see that the only function of the reason maintenance system is to
ensure that the arguments made by the user in support of some proposition are
sound . Soundness here has, of course, a nonstandard meaning, as the reason main-
tenance system is nonmonotonic. The RMS subsystem does not assist the user in
interpreting the law or illiciting the facts necessary to support some conclusion.
It only insures that arguments made are internally coherent, to satisfy the formal
constraint of justice requiring arguments to be logical.

As mentioned above, in our RMS there is always exactly one labelling to be
computed, and there is a deterministic algorithm which can compute this unique
labelling. As this behavior is at odds with Doyle’s semantics for reason maintenace
systems supporting nonmonotonic justifications [Doyle 83], our RMS needs some
explanation. The basic intuition is this: we conjecture that in legal reasoning every
proposition playing a role in an argument must be constructively justified. That
is, the proponent of the argument must positively show a reason for believing the
proposition. On the other hand, it is not necessary for the propopent to show why
some proposition is not believed. That is, we suppose legal reasoning to be skeptical;
no proposition is believed unless there is a valid argument made in its support.

Without going into detail, let us contrast this position with the philosophy
underlying Doyle’s semantics for reason maintenace systems. His concern is whether
the beliefs of an agent may be true given what is presumed to be true about the
actual world. If so, then in Doyle’s system such a set of beliefs is justifiable or,
using his terminology, admissible. Thus, an agent may believe whatever he likes so
long as his beliefs are internally coherent.

Doyle’s semantics does require beliefs to be grounded , in the technical sense that
there be at least one valid justification for the belief in the labelling chosen by the
agent (or RMS). We however are suggesting that a stricter kind of groundedness is
required in legal reasoning: belief in a proposition is grounded only if the proposition
must be believed given the current set of justifications. If we take a constraint
satisfaction view of reason maintenance, Doyle’s semantics allows the node denoting
a proposition to be in so long as the constraints represented by the justifications
are satisfied; our system allows the node to be in only if the constraints require the
proposition denoted by the node to be believed. Our view of reason maintenance
has yet to be formalized. However Konolige, in his comparison of Default Logic and
Autoepistemic Logic [Konolige 87], notes that

Default logic is brave in the sense that in the presence of competing
defaults, individual extensions will satisfy a maximally consistent set of
defaults; in contrast, a natural corresponding circumscriptive theory for
defaults would be cautious, inferring only what the competing extensions
have in common.

This suggests there may be a connection between circumscription and the kind of
reason maintenance system we have designed for ACS.

Perhaps the service offered by the reason maintenance component of ACS would
be enough to warrant using the system. The tactical component of ACS, however,
extends the functionality of the system by making suggestions to the user about
how to extend or modify the set of justifications in order to construct an argument
in favor of some proposition. The current implementation of the tactical component
is rather limited, as will be seen, but in principal it can become arbitrarily com-
plex, including knowledge bases for assisting with the task of interpreting primary
sources of law or making recommendations regarding particular arguments based
on knowledge about the previous behavior of some particular judge, for example.

18

The tactical component does not in general presume any particular role or pur-
pose of its user. Different instances of the component can be imagined for advocates
defending the interests of some client and for judges whose task, let us assume, it is
to further and protect interests other than the limited interests of some particular
party to the case before the court.

In his paper criticizing expert systems which presume there are clear legal rules
[Leith 85], Philip Leith did suggest that expert systems may play a role similar to
that of the tactical component of ACS:

Thinking beyond the deterministic system it might be considered how
systems might be built which can aid the person trying to prepare a case.
The system might do this by helping to pinpoint the various potential
outcomes — or rule breaking strategies. . . . Experts are often wrong,
so it seems essential to build legal advisory systems which encapsulate
various expert models, and which might allow the user to add to the
expertise that he or she has to the decision process — in other words,
we are basing our systems upon a “textbook model” rather than a rule
based model. . . . Commentaries and suggested interpretations of the
law might be handled (and easily updated). Also, other factors can be
handled which cannot be held in a textbook; for instance, the builder
of the system may inform the program that an extremely conservative
bias might well be present in the eventual judicial decision, or that past
experience has shown Judge X to have a view Y on the type of problem
under investigation . . .

The current tactical component of ACS uses rule bases consisting of Prolog-like
rules representing interpretations of the law. I say ‘Prolog-like’, as there are impor-
tant differences. First of all, the language supports ordinary negation rather than
Prolog’s interpretation of negation as failure. Second, there is an unless operator
which is used to support nonmonotonic reasoning. Informally, unless p can be un-
derstood to mean M¬p, using the modal operator M . That is, unless p is satisfied if
¬p is consistent. The trick here concerns how consistency is determined. We adopt
the same approach used in Goodwin’s WATSON system [Goodwin 87]; namely, ¬p
is considered to be consistent if p is out given the current set of justifications. This
approach makes it very easy, and efficient, to determine whether the nonmonotonic
conditions of a rule are satisfied. Unfortunately, it is not at all clear just what an
appropriate semantics for this approach would be. It does not appear to conform
to the semantics of Moores Autoepistemic Logic [Moore 85], for example.

It is not necessary for an expert to develop one unified theory of some area of
law in order to build expert systems for use with ACS. Incompatible interpretations
of the law can be asserted into a single knowledge base. Alternatively, the end
user can load and apply knowledge bases constructed by a variety of experts having
incompatible interpretations of the law, even though each expert has done his best
to construct an internally consistent view of the law.

The reason consistent knowledge bases are not required by ACS is that the user
is asked to accept the interpretation of the law recommended by the expert before
it is used to create justifications. Moreover, every node in the reason maintenance
system is made explicitly dependent on the rules used to justify the node. This
makes it easy to reconsider an interpretation of the law. If the rule is made out , by
retracting the premise representing the rule, e.g., all the conclusions which depend
on that interpretation will also be made out by the RMS.

I mentioned that the current tactical component is rather limited. This is be-
cause the knowledge bases used by the component are restricted to collections of
rules representing possible or recommended interpretations of some area of law.
There is no way presently to represent knowledge about which interpretation to

19

prefer given the goals of the user. Nor does the tactical reasoner make suggestions
about which premises to retract or modify to make some node in.

To show how the tactical component is used in the current version of ACS,
let us continue with the session started above. The user has asserted a premise
stating that a is a contract. Suppose he wants to argue that a is valid. Clearly,
valid(a) is not currently in, as there is not yet a justification for this proposition,
let alone a valid justification. At this point the user could load into the system
one or models concerning German contracts law and then ask the tactical system
to try and refute the current belief status of valid(a). As valid(a) is currently out ,
asking the system to refute this is the same as asking it to make suggestions about
justifications sufficient to make valid(a) in. Refutation always attempts to switch
the current label of some node. The tactical subsystem would in this case look for
rules capable of supporting an argument in favor of validity, and then try to solve
the subgoals of these rules. In the process of trying to find an argument of valid(a),
justifications may be asserted by the tactical component, and the user may be asked
questions about the facts of the case. The interaction at this stage is very similar
to the usual kind of expert system in law.

Supposing that there is a rule stating that contracts are valid unless one of
the parties is a minor, the tactical component would suggest asserting a justifica-
tion to the effect, roughly speaking, that valid(a) is in, if contract(a) is in and
contract with minor(a) is out . The reason maintenance module would then make
valid(a) in, as there is still no argument to be made supporting contract with minor(a).

It is important to notice that valid(a) being in does not imply that ¬valid(a)
is out ! As far as the RMS is concerned, both of these propositions can be in or
believed at the same time. It is the users responsibility to avoid contradictions of
this sort. The tactical module can, in principle, be extended so as to help the user
with this task, however. Reason maintenance does not necessarily mean consistency
maintenance.

Up to this point, we have imagined that there is a single lawyer using ACS to try
to construct an argument in favor of some proposition. ACS could be used by two
lawyers simultaneously, however, to engage in a kind of debate or dialog regarding
some issue. In this case it is useful to think of ACS as a kind of computer-assisted
game. An ACS case, in which justifications are asserted and modified, plays the role
of the game board. Legal moves of the game are restricted to asserting justifications.
The two debaters, or to continue with this game metaphor, player’s, take opposing
positions with respect to main issue. One player tries to make the proposition
in, the other tries to make it out . Players take turns asserting justifications. A
players turn is completed when sufficient justifications have been asserted to make
the proposition in or out , depending on the players goal. The game is over when one
player is unable to find justifications sufficient to switch the label of the proposition
back to the status he is advocating. The other player is then declared the winner.

This game oriented view of ACS is reminiscent of Dialog Logic [Felscher 86],
which suggests there may be a connection between reason maintenance and in-
tuitionistic logic. However Dialog Logic seems to me to be ‘just’ a calculus for
‘standard’ intuitionistic logic which, unlike reason maintenance systems of the type
used in ACS, does not support nonmonotonic reasoning.

I do not want to say too much about the current implementation of ACS here.
The implementation is being done by Karsten Schweichart as part of his Diplomar-
beit , and his realization of the ideas presented here will be described fully in his
thesis. It is implemented in Prolog and Modula-2 and runs on Macintosh computers.
The user interface was programmed by Kai Diestelmeier.

20

6 Concluding Remarks

What has been accomplished with ACS? It represents, I believe, an honest and
realistic approach to computer-supported legal decision making. It surmounts the
problem of the lack of clear legal rules, which Leith is quite right in pointing out
is a fundamental problem for legal expert systems based on the deductive model of
legal reasoning. Leith suggested that if we try to construct a computer system for
supporting legal decision making in the face of a lack of such clear rules, “. . . we are
no longer attempting to design systems with ‘artificial intelligence’ . . . ” [Leith 85].
He of course was raising the difficult issue as to just what intelligence is, and when
it can be said that a computer sytem exhibits intelligence. Whatever position one
wishes to take on this issue, it must be conceded that the technologies necessary to
build software systems like the Argument Construction Set are coming out the of
field of Artificial Intelligence. So I must disagree with Leith on this point. If we
are to construct expert systems which assist lawyers with legal reasoning, then AI,
in the technical sense understood by researchers in the field, is a necessity .

References

[Brewka 87] Gerhard Brewka; Nonmonotonic Logics: An Introductory
Overview ; GMD Research Paper; Number 274; 1987.

[deBessonet 84] C. G. deBessonet; An Automated Intelligent System Based on a
Model of a Legal System; Rutgers Computer & Technology Law
Journal; Volume 10; 1984.

[DeKleer 86a] Johan DeKleer; An Assumption-Based TMS ; Artificial Intelli-
gence; Volume 28; 1986.

[DeKleer 86b] Johan DeKleer; Extending the ATMS ; Artificial Intelligence; Vol-
ume 28; 1986.

[Doyle 79] Jon Doyle; A Truth Maintenance System; Artificial Intelligence;
Volume 12; 1979.

[Doyle 83] Jon Doyle; The Ins and Outs of Reason Maintenance; Interna-
tional Joint Conference on Artificial Intelligence; Karlsruhe; 1983.

[Etherington 83] D. W. Etherington and R. Reiter; On Inheritance Hierarchies with
Exceptions; AAAI-83; 1983.

[Etherington 87] D. W. Etherington; A Semantics for Default Logic; IJCAI-87;
Milan; 1987.

[Felscher 86] Walter Felscher; Dialogues as a Foundation for Intuitionistic
Logic; in Handbook of Philosophical Logic; Volume III; D. Gabbay
and F. Guenthner, eds.; D. Reidel Publishing Company; 1986.

[Fiedler 85] Herbert Fiedler; Expert Systems as a Tool for Drafting Legal De-
cisions; II Convegno Internazionale Logica, Informatica, Diritto;
Florence; 1985.

[Genesereth 87] Michael R. Genesereth and Nils J. Nilsson; Logical Foundations of
Artificial Intelligence; Morgan Kaufmann; 1987.

[Ginsberg 87] Matthew L. Ginsberg, editor; Readings in Nonmonotonic Reason-
ing ; Morgan Kaufmann; Los Altos; 1987.

21

[Goodwin 87] James W. Goodwin; A Theory and System for Non-Monotonic
Reasoning ; Linköping Studies in Science and Technology; No. 165;
1987.

[Gordon 87] Thomas F. Gordon; OBLOG-2: A Hybrid Knowledge Represen-
tation System for Defeasible Reasoning ; First International Con-
ference on Artificial Intelligence and Law; Boston; 1987.

[Gordon 88] Thomas F. Gordon; The Importance of Nonmonotonicity for Legal
Reasoning ; 1988; to appear.

[Junker 88] Ulrich Junker; Reasoning in Multiple Contexts; GMD Research
Report; in preparation; 1988.

[Konolige 87] K. Konolige; On the Relation Between Default Theories and Au-
toepistemic Logic; In Readings in Non-Monotonic Reasoning; M.
L. Ginsberg, ed.; Morgan Kaufmann; Los Altos; 1987.

[Leith 85] Philip Leith; Clear Rules and Legal Expert Systems; II Convegno
Internazionale Logica, Informatica, Diritto; Florence; 1985.

[McCarty 77] L. Thorne McCarty; Reflections on TAXMAN: An Experiment in
Artificial Intelligence and Legal Reasoning ; Harvard Law Review;
Volume 90; 1977.

[McCarthy 80] J. McCarthy; Circumscription — a Form of Non-Monotonic Rea-
soning ; Artificial Intelligence; Volume 13; 1980.

[McDermott 80] Drew McDermott and John Doyle; Non-Monotonic Logic I ; Arti-
ficial Intelligence; Volume 13; 1980.

[McDermott 82] Drew McDermott; Non-monotonic Logic II: Non-Monotonic
Modal Theories; Journal of the ACM; Volume 29; Number 1; 1982.

[Minsky 75] Marvin Minsky; A Framework for Representing Knowledge; in
Readings in Knowledge Representation; eds. Ronald J. Brachman
and Hector J. Levesque; Morgan Kaufmann; Los Altos; 1985.

[Moore 85] Robert Moore; Semantical Considerations of Nonmonotonic
Logic; Artificial Intelligence; Volume 25; 1985.

[Nilsson 80] Nils J. Nilsson; Principles of Artificial Intelligence; Tioga; 1980.

[Reinfrank 86] Michael Reinfrank; Reason Maintenance Systems; Workshop on
Truth Maintenance Systems; Berlin; October, 1986.

[Reiter 80] R. Reiter; A Logic for Default Reasoning ; Artificial Intelligence;
Volume 13; 1980.

[Roberts 77] R. B. Roberts and I. P. Goldstein; The FRL Primer ; Memo 408;
MIT Artificial Laboratory; 1977.

[Sergot 86] M. J. Sergot, F. Sadi, R. Kowalski, R. A. Kriwaczek, P. Hammond
and H. T. Cory; The British Nationality Act as a Logic Program;
Communications of the ACM; Volume 29; 1986.

[Stamper 80] R. Stampler; LEGOL: Modelling Legal Rules by Computer ; Com-
puter Science and Law; ed. Niblett; 1980.

22

[Susskind 87] Richard E. Susskind; Expert Systems in Law ; Oxford University
Press; 1987.

[Touretzky 86] David S. Touretzky; The Mathematics of Inheritance Systems;
Morgan Kaufmann; 1986.

[Winston 84] Patrick H. Winston and Berthold K. P. Horn; Lisp; second edition;
Addison-Wesley; 1984.

23

