A Use Case Analysis of Legal Knowledge-
Based Systems

Thomas F. Gordon,
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Abstract. A number of important use cases for public administration (“e-
governance”) applications of legal knowledge-based systems are identified. For each
use case, a data flow model is developed showing processes and document types
sufficient to implement the use case. Our main goal is to identify document types
which, if standardized, would enable a modular set of interoperable components for
building legal knowledge-based systems.

1. Introduction

This paper provides a high-level process analysis of the major use cases of legal
knowledge-based systems, with a focus on public administration applications. Our analysis
is based in part on prior work by the ePower project [Engers 2001, Engers 2003] and the
survey of Al methods and tools for supporting legal argumentation by Bench-Capon, et. al.,
in [Bench-Capon 2003]. Use cases are a software engineering modeling and diagramming
technique, standardized as part of the Unified Modeling Language. Use cases are very
high level models showing how different kinds of actors interact with a system to carry out
tasks. They are useful for helping to get an overview of the desired functionality of the
complete system and are an “essential tool” for identifying requirements [Fowler 2000].

Figure 1 is a UML diagram showing all of the use cases we have identified. There are
five main kinds of actors participating in these use cases: legal analysts (lawyers) and
knowledge engineers (computers scientists) work together to build formal, computer
models of legislation; clients (citizens or businesses) consult advisors (such as lawyers or
tax consultants) take part in a structured dialog, for example to apply for social benefits or a
building permit, with a public agency. Both the advisor (or the client) and the public agency
use these models and other resources to analyze the issues of a case and to generate
arguments.

The following section present process models showing the document types and
processes required to implement each use case. In doing this, our main goal is to identify
document types which, if standardized, would enable a modular set of interoperable
components for building legal knowledge-based systems. Ideally, appropriate industry
standards for the document types in these processes would enable components to be used
together and allow consumers to freely choose products for each of the components.
Presumably competition would help to improve quality and reduce prices while the
availability of several competing products for each component would provide public
administration and other users with a measure of security protecting their investments.

<USEs=
B

citizen \S
Generate
<USEs>
Docs
/7 client
Issue
Analysis

business

legislative

Modeling analyst

#
/ <uses=

4 V
=uses>
e

&
s
s
Argument
Generation

Argument
Ewvaluation

<uses-
—
-

knowledge
engineer

Discourse
Support

public
agency

-
tax <USes= <uses> <uses>
-~

advisor £ .)
Argument Procedural Record
Presentation Support Dialog

Figure 1. Legal Reasoning Uses Cases

i

2. Modeling Norms

Let us begin with the Modeling Norms use case. Here the task is to interpret and analyze
legal sources, such as a piece of legislation, a regulation or some case law, to produce a
high-level formal model of the concepts and norms in the sources. For our purposes here, it
does not matter what knowledge representation methods are applied for this purpose.
Figure 2 show the data flow diagram' for norm modeling.

There are two starting points in this data flow chart. You can start at the bottom, with an
empty norm model, and simply begin to create a model. If, for example, the models are
being created using UML/OCL, as in the ePower methodology, this could be done using
one of the many CASE tools for UML. Presuming you have a structured, marked-up
version of the legislation to be modeled, using for example the MetaLex XML document
schema for legislation [Boer 2002], you can start at the top by generating partial models
from this structured document and then integrating these models. For example, the ePower
workbench provides a tool for generating models from MetalLex files, using a natural
language parser to identify concepts and relations.

' To be precise, we use UML Activity Diagrams as data flow diagrams.

®

1
W

: Metalex

1
¥
Generale
Model
e -

1 -

1 e
¥

P Ty

: Morm Model - Morm Model : Norm Model

o 1
el ' -
Intagrate
Models
1
¥

nm : Morm Model
[initial]

nm : Morm Model
[revised]

Figure 2. Modeling Norms

Please note that the processes in this and the following data flow diagrams, such as
Generate Model and Integrate Model in Figure 2, are not assumed to be performed
completely automatically. Rather, the way these processes are performed is left completely
open during this analysis. At one extreme, the process could be performed completely
manually, in some conventional way. More ambitiously, ICT tools can be imagined which
could assist a human user in performing these tasks. Most advanced would be full
automation, but this is clearly beyond the state of the art for many if not most of the
processes discussed in this paper.

3. Word Import

The ePower workbench also provides a tool implementing the Word Import use case from
Figure 1. The data flow diagram for the Word Import use case is shown in Figure 3.

The structure parser converts a Microsoft Word version of a piece of legislation into
MetaLex, which is an XML Schema for legislation and other legal texts. The structure
parser depends on the structure of the Word document having been previously marked up
by applying paragraph and character styles from a particular Word template. This
conversion process is made necessary by the wide spread use of Microsoft Word to draft
legislation. Perhaps some day this will be done using XML editors, making this conversion
process unnecessary. The Check References process of the Word Import use case makes
sure that all cross references in the legislation are correct, or at least do not refer to non-
existing sections or paragraphs.

- Word Do - Word Templata

S P
.
S -
e .
~ -
Structure
Parser
[
1

! -
! e
¥ LYY
Lagislation1:
Metalex Error Report
[walid]

1
'
'
1
'
Chack
References
E——
1
'
1
1
1
¥

s
=

Lagislation1:
Metalex Error Report
[checkad)

Figure 3. Word Import

In the discussion so far we have identified three document types which are candidates
for a standardization effort: 1) the Word Template for marking up legislation using
Microsoft Word; 2) An XML document schema such as MetaLex for marking up the
structure of legislation using XML; and 3) some document type for models of norms. More
will follow below.

4. Model Testing

Figure 4 is the data flow diagram for testing norm models. This is the first process to use
argumentation, which will be explained shortly. The input to the process is some
representation of a case and the norm model. The diagram illustrates the testing process for
a single case, but this process usually would be iterated for some set of test cases. A case
here should consist at least of the legal facts of the cases, that is the facts in terms of the
legal terminology (or “ontology”) used by the norm model, the legal issue or issues to be
decided and the outcome or decision. For decided court cases, the outcome would be the
actual decision reached by the court. But for testing models of new legislation the test cases
may be “hypotheticals” with the desired outcomes given the policy behind the legislation.

: Case - Narm Medel

i Generala
: Arguments

1
W

: Argumenis

1
|
' ¥
] Apply
i Argumenis
i
]
W

: g: Argumant
Graph
H junlabeled]

i ¥

Il
: Evaluate

1 Argumenis

i

¥

g: Argumant
Graph
[labeled]

i

' ¥
e Check
Rasults

Figure 4. Model Testing

Now we explain the use of argumentation in this process. We do not restrict the norm
models to logical representations, let alone to representations in monotonic logics such as
first-order predicate logic (FOL). Rather, we want to also support models which use, for
example, case-based reasoning or some kind of defeasible (nonmonotonic) logic. The
problem here is to find a way to make the results of reasoning with such heterogenous
models somehow comparable and interoperable. Our proposed solution is to have each kind
of model explain its reasoning as a set of arguments in a standard format. Each argument
instantiates an argumentation schema, where each kind of model can define its own
schemas.

The Generate Arguments process applies the model to the facts of the case to try to
resolve the issues of the case. Essentially, the issues are interpreted as queries to be posed
to the model. The model may generate conflicting arguments, pro and contra some
resolution of an issue. The task of the Apply Arguments process is to link up these
arguments into an argumentation graph. The Evaluate Arguments process then labels the
arguments, or the propositions in the premises and conclusions of the arguments. These
labels record whether the argument or proposition is acceptable (i.e. to be considered
proven or “true” given all the arguments made). The Check Results process then compares
the decision of the case with the labels of the issues in the argument graph to determine
whether they are consistent or compatible.

The precise form and semantics of legal arguments, argument schemas, argument
graphs is an active area of research [Gordon 1997; Greenwood 2003; Prakken 2003]. But
all approaches fit the abstract process model presented here. Again, our goal here is not to
solve these research problems but to identify document types and processes which
(eventually) should be standardized. Here we see the need for standards to represent cases,
norm models, arguments and argument graphs.

One important advantage of this process model is that it is easily extensible to cover
reasoning with multiple norm models. Many legal problems can only be resolved by
considering a multiple sources of norms. For example, a cross-border commercial

transaction between parties in Germany and The Netherlands might be regulated by The
Unitied Nations Convention on the International Sale of Goods® (CISG), laws of the
European Union and the national laws of both countries, not to mention case law about all
of these legal texts.

This completes our presentation of the use cases for modeling norms, except for the
Generate Docs use case. This is about generating documentation of norm models from
templates and style sheets in various output formats, such as HTML, PDF, or even Word.
Since document generation is well understood and well supported by industry standards, we
have omitted a more detailed discussion to save space.

5. Issue Analysis

Let us turn our attention to the more interesting use cases in which clients with the help of
their advisors interact with public agencies, beginning with Issue Analysis. To illustrate the
issue analysis use case, let us use the following hypothetical from [Branting 2003]. A client
comes into an attorney's office and tells the following story:

At the place where I work, our bookkeeper didn’t give me my paycheck. Instead
she signed my name on it, cashed it an left town. I asked my boss for a new check
but he said he already paid me. Is he right that he doesn’t owe me my wages?

Although from a common sense perspective the client's story and problem are quite
clear, the problem is to identify the legal issues, if any. To do this, the story needs to be
interpreted in light of knowledge of one or more areas of substantive law. Is this a
commercial law problem, a labor law problem, or perhaps some kind of tort? (Or perhaps
more than one of these.) That is, the lawyer needs to use his knowledge of the law to first
try to narrow in on one or more areas of law which might be relevant. Then, for each of the
selected areas of law, the common sense terms of the client's story need to be mapped into
the technical legal terms. Branting shows the result for the US Uniform Commerical Code:

Under Article 3 of the Uniform Commercial Code, is a payor’s obligation to a payee
discharged by a negotiable instrument if the negotiable instrument is paid to a third
party over a forged signature?

Only after the problem has been reformulated in this way can we begin to use some
model of the selected legal domain to try to begin to analyse the legal issues and generate
arguments for the client.

Although Branting's example is about a private legal conflict, the problem is just as
relevant in the context of e-governance and the electronic delivery of public services. One
of the goals of e-governance is to provide one-stop shops for citizens on the Web.
Supposing that the vision is to provide a wide variety of government services backed by
legal knowledge-based systems, how shall the citizen find out which of the many services
is relevant for his or her problem or “life event”? The person at the front-desk of the one-
stop shop has the role of the advisor in this scenario and faces the same issue identification
problem of an attorney or other legal advisor.

Figure 5 is the data flow diagram for the issue identification process. (Incidentally, this
process is called “theory construction” in [Bench-Capon 2003], but since this term is also
used for the process of creating a theory explaining a set of precedent cases I prefer “issue

* http://www.cisg-online.ch/cisg/conv/convuk.htm

identification” here.) There are two main tasks in this process, finding models and
interpreting the story of the client. We imagine there to be a library of models, including
metadata indexing the models. For each model selected, the story interpretation task
translates the story into legal facts and issues.

A'Story" is &
set of "common - : Stary : Moded Library
sense” facts.

v -

e,
.
|
A .
\ Find Modals
\
\
-

\

Y

: Norm Model

\
.

\ -

Interprat
Story

-

x:' ~y
W "
Facts" are legal Eacts |ssues
facts only

Figure 5. Issue Identification

¥

Document types of the issue identification process which might be suitable for
standardization include the norm models, and representation of the legal facts and issues.
Legal facts and issues were also a part of the case document type discussed previously, so
these should be represented in an integrated fashion, as part of the same document type.
The story document, on the other hand, does not seem suitable for standardization, since it
is simply the story as told by the client in natural language.

It is not clear how far we can go in providing ICT support for finding models and
interpreting stories. Surely some support can be provided, but these are very difficult tasks
requiring a great deal of both common sense knowledge and legal expertise.

6. Argument Generation

The next use cases to discuss are for generating and evaluation arguments. Figure 6 is a
data flow diagram for argument generation. It is similar in some ways to the model testing
process discussed previously. Instead of a test case, we have the legal facts and issues
which were identified by the previous process. Instead of a decision or desired outcome,
some representation of the interests of the client are input into the process. These are used
to evaluate and select arguments supporting alternative decisions or outcomes, rather than
restricting attention to a single desired outcome prematurely. The argument selection
process also take into account the prior state of the dialog, recorded in an argument graph,
and features of the audience, to make use of rhetorical skills. The result of the argument
construction process is a set of selected arguments and a updated argumentation graph
including these arguments.

: Facts - lssues - Norm Maodel

1 -
1

- 1
1 -

~
Generate V. ______________| : Argument
Arguments Schamas

v

- Arguments

N - Interests

1 e
X -
Salact - q: Argu mant
A . Graph
Argumenis ~. o
S Rt
.

: Audience

g : Argument
: Argumenis Graph
[madified]

Figure 6. Argument Generation

There are no new document types in this process, assuming that legal facts and issues
are part of the document type for cases. An exception is possibly the document type for
argument schemas, which appears here for the first time. Perhaps argument schemas should
be a part of document type for domain models. There seems no pressing need to standardize
the representation of interests and the audience, so long as there are no tools or methods for
using these representations to select arguments. We are not aware of research results in this
area.

7. Argument Evaluation

Figure 7 is a data flow diagram for the argument evaluation process. It is deceptively
simple. It takes a set of arguments and the prior state of an argument graph, extends this
graph with the new arguments and updates the labels of the graph. This process may make
use of the argument application and evaluation processes of the model testing process
discussed previously. Although not shown in the diagram, a model of metanorms for
resolving conflicts between norms will be used by this process. Famous examples of such
norms include lex specialis (prefer the most specific norm) and /ex superior (prefer the
most authoritative norm). But there is a lot of hand waving going on here, since as
mentioned previously this is an active area of research. There is as yet no consensus on the
form (syntax) or semantics of argumentation graphs. No new document types appear in this
process.

q - Argument

: Arguments Graph

~ -
. P .
~ Py
Extand Graph
& Updats
Labels
1
1

|
W
g - Argument
Graph
[labeled]

Figure 7. Argument Evaluation

8. Discourse Support

This nearly completes our discussion of the legal reasoning use cases. It remains only to
discuss discourse support. We do not have data flow diagrams for the discourse use cases
ready for this paper. Although my colleagues and I have done some work in this area
[Gordon 1995; Gordon 2002; Mochol 2003] some effort is required to bring this prior work
up to date and to integrate it into the general framework presented here. However some
general requirements already seem quite clear. The discourse support system must support
the use of formal, structured protocols for various kinds of dialog types [Walton 1998],
such as critical discussions, deliberation and negotiation. These protocols will make use of
rules of procedure [Prakken 1999], which themselves ideally would be modeled in the same
way as substantive areas of law. In the e-governance context, there may be specific
administrative procedures to take into consideration. The discourse support system will
need to manage the state of the dialog, keeping a record of the moves (speech acts) made
and their effects. This includes managing the so-called commitment stores of the
participants, so that we know who made which assertions of facts. These commitment
stores are not only for helping to prevent the participants from contradicting themselves,
but also for such mundane purposes as allowing information provided on forms to
modified. Finally, the discourse support system should provide tools for presenting and
visualizing arguments and argument graphs [Kirschner 2002; Rowe 2003], to make them
more understandable without requiring users to become familiar with formal languages.

9. Conclusion and Future Work

The main goal of the work presented here has been to identify document types which, if

standardized, would enable a modular set of interoperable components for building legal

knowledge-based systems. Rather than taking a technology-driven approach, by starting

with existing legal knowledge-based systems and looking for common document types, we

have taken a requirements-driven approach here, starting with e-governance use cases. In

conclusion, the following document types have been identified:

* A Microsoft Word template for marking up legislation and other sources of norms using
Word;

* A markup language and exchange format for legislation and other sources of norms;

* A knowledge representation language and exchange format for formal models of norms;

* An exchange format for legal cases, including facts, issues and decisions;

* An exchange format for arguments and argument graphs; and

* Possibly a representation language and exchange format for argument schemas, if this is
not part of the language for norm models.

We have conducted a survey of proprietary formats, research prototypes and proposed
or emerging standards for these document types. Unfortunately, there is no room to present
the results of this survey here; we will try to publish this research in another paper soon.
For now, we can only say that our conclusion is that the legal knowledge-based systems
industry is still in a very early stage of development.

References

Bench-Capon, Trevor, James Freeman, Hanns Hohmann and Henry Prakken "Computational Models,
Argumentation Theories and Legal Practice." Argumentation Machines; New Frontiers in Argument
and Computation. Eds. Chris Reed and Timothy J. Norman: Kluwer Academic Publishers, 2003. 85-
120.

Boer, Alexander, Rinke Hoekstra, and Radboud Winkels. "Metalex: Legislation in Xml." Legal Knowledge
and Information Systems (Jurix 2002). Eds. T. Bench-Capon, A. Daskalopulu and R. Winkels: I0S
Press, 2002. 1-10.

Branting, L. Karl. "An Agenda for Empirical Research in Al and Law." ICAIL Workshop on the Evaluation
of Legal Reasoning and Problem-Solving Systems. Eds. Karl Branting and Steffi Briininghaus.
Edinburgh: International Association of Artificial Intelligence and Law, 2003. 28-35.

Engers, Tom M. van, Rik Gerrits, Margherita Boekenoogen, Erwin Glassée and Partries Kordelaar "Power:
Using UML/OCL for Modeling Legislation — an Application Report." International Conference on
Artificial Intelligence and Law (ICAIL 2001). Ed. Henry Prakken. St. Louis, 2001. 157-67.

Engers, Tom M. van, and Margherita R. Boekenoogen. "Improving Legal Quality — an Application Report."
International Conference on Artificial Intelligence and Law (ICAIL 2003). Ed. Giovanni Sartor.
Edinburgh: ACM, 2003. 284-92.

Fowler, Martin, and Kendall Scott. UML Distilled — a Brief Guide to the Standard Object Modeling
Language. 2nd ed: Addison Wesley Longman, Inc., 2000.

Gordon, Thomas F., and Nikos Karacapilidis. "The Zeno Argumentation Framework." Proceedings of the
Sixth International Conference on Artificial Intelligence and Law. Melbourne, Australia, 1997. 10-18.

Gordon, Thomas F. The Pleadings Game; an Artificial Intelligence Model of Procedural Justice. Dordrecht:
Kluwer, 1995.

Gordon, Thomas F., and Oliver Mérker. "Mediation Systems." Online-Mediation. Neue Medien in Der
Konfliktvermittlung - Mit Beispielen Aus Politik Und Wirtschaft. Eds. Oliver Mérker and Matthias
Trénel. Berlin: Edition Sigma, 2002. 61-84.

Greenwood, Katie, Trevor Bench-Capon, and Peter McBurney. "Towards a Computational Account of
Persuasion in Law." International Conference on Artificial Intelligence and Law. Ed. Giovanni Sartor.
Edinburgh: ACM, 2003. 22-31.

Johnson, Peter. Legal Knowledge-Based Systems in Administrative Practice and Electronic Service Delivery
(E-Government), 2000.

Kirschner, Paul A., Simon J. Buckingham Shum, and Chadd Carr, eds. Visualizing Argumentation: Software
Tools for Collaborative Education and Sense-Making. London: Springer-Verlag, 2002.

Mochol, Malgorzata. "Discourse Support Design Patterns." Online Dispute Resolution — Legal and Technical
Aspects. Eds. Arno R. Lodder, et al. Edinburgh, 2003. 61-74.

Prakken, Henry, and Thomas F. Gordon. "Rules of Order for Electronic Group Decision Making — a Formal
Methodology." Collaboration between Human and Artificial Societies. Ed. Julian A. Padget. Springer
Lecture Notes in Ai. Berlin, 1999. 246-63.

Prakken, Henry, Chris Reed, and Douglas Walton. "Argumentation Schemes and Generalisations About
Evidence." International Conference on Artificial Intelligence and Law. Edinburgh, 2003. 32-41

Rowe, G. W. A, C. A. Reed, and J. Katzav. "Araucaria: Marking up Argument." European Conference on
Computing and Philosophy. Glasgow, 2003.

Walton, Douglas N. The New Dialectic : Conversational Contexts of Argument. Toronto; Buffalo: University
of Toronto Press, 1998.

10N

