
Constructing Arguments with a Computational Model
of an Argumentation Scheme for Legal Rules

Interpreting Legal Rules as Reasoning Policies

Thomas F. Gordon
Fraunhofer FOKUS

Berlin, Germany
thomas.gordon@fokus.fraunhofer.de

ABSTRACT
A knowledge representation language for defeasible legal
rules is defined, whose semantics is purely procedural, based
on Walton’s theory of argumentation and Loui’s break with
the relational tradition in ‘Process and Policy’. Legal rules
are interpreted as reasoning policies, by mapping them in the
semantics to argumentation schemes. The reasoning process
is regulated by argumentation protocols. Reasoning with le-
gal rules is viewed as applying schemes for arguments from
rules to construct arguments to be put forward in dialogues.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Knowledge Representation Formalisms and Methods; J.5
[Computer Applications]: Administrative Data Process-
ing

Keywords
Legal Knowledge-Based Systems, Computational Models of
Legal Reasoning and Argumentation

1. INTRODUCTION
Legal rules express public policy. These are not only poli-

cies about how to act, but also policies about how to reason
when planning actions or determining the legal consequences
of actions after they have been performed. For example, the
definition of murder as the “unlawful killing of a human
being with malice aforethought” expresses both the policy
against the intentional killing of another human being and
the reasoning policy to presume that a murder has been com-
mitted if it has been proven that a human being has been
killed intentionally. Such presumptions are not sufficient for
making legally correct decisions. Having proven that the
defendant has killed someone intentionally is not sufficient
for proving guilt. Rather, a guilty verdict would be legally
correct only at the end of a proper and fair legal procedure,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL 2007 Palo Alto, California,USA
Copyright 2007 ACM 978-1-59593-680-6 ...$5.00.

i.e. via “due process”, in which the parties are given a fair
opportunity to produce evidence and make arguments and
these are properly taken into consideration in the justifica-
tion of the decision. If during this procedure the defendant
is able to produce evidence of the killing having been done
in self-defense, for example, a guilty verdict would be cor-
rect only if the prosecution succeeds in addition to meet its
burden of persuading the court that the killing was in fact
not done in self-defense.

Thus, the semantics of the knowledge-representation for-
malism for legal rules presented here is based on the di-
alectical and argumentation-theoretic approach articulated
by Ron Loui in his landmark article “Process and Policy:
Resource-Bounded Non-Demonstrative Reasoning” [4]. Es-
sentially, legal rules are interpreted as policies for reason-
ing in resource-limited, decision-making processes. In ar-
gumentation theory such reasoning policies are viewed as
inference rules for presumptive reasoning, called argumen-
tation schemes [9]. Arguments are instances of argumen-
tation schemes, constructed by substituting variables of a
scheme with terms of the object language. An argument
graph is a proof constructed from a set of arguments. A set
of argumentation schemes defines a search space over argu-
ment graphs. Reasoning with argumentation schemes can
be viewed as heuristic search in this space, looking for argu-
ment graphs in which some disputed claim is acceptable or
not given the proof represented by the argument graph. In
dialogues, the parties take turns searching this space, look-
ing for counterarguments. Turn-taking, termination condi-
tions, resource limitations and other procedural parameters
are determined by the rules of the legal proceeding, i.e. by
the argumentation protocol for the particular type of pro-
ceeding.

The rule language developed here is much like the one the
author developed for the Pleadings Game [1]: rules are rei-
fied and subject to exceptions; conflicts between rules can be
resolved using other rules about rule priorities; the applica-
bility of rules can be reasoned about and excluded by other
rules; and the validity of rules can be questioned. The rule
language of the Pleadings Game is similar in some ways to
Reason-Based Logic [3], developed independently at about
the same time. The Pleadings Game is cited in Prakken and
Sartor’s 1996 article [6], in which they introduce their lan-
guage for defeasible rules, now known as PRATOR, but it is
not clear to what extent the rule language of the Pleadings
Game influenced the design of PRATOR. All three of these
systems viewed reasoning with legal rules as argumentation,

1

but none of them interpreted legal rules as argumentation
schemes. Rather, in all of these systems legal rules were
either represented as sentences in a nonmonotonic logic or,
as in the Pleadings Game, compiled to a set of such sen-
tences.1 Verheij was the first to explicitly discuss the mod-
eling of legal rules using argumentation schemes [8] but like
the Pleadings Game interprets rules as abstractions of sets
of formulas in a nonmonotonic logic, rather than interpret-
ing rules as abstractions of arguments, i.e as argumenta-
tion schemes in Walton’s sense [9]. With the exception of
the Pleadings Game, these prior systems model argumen-
tation as deduction, i.e. as a defeasible consequence rela-
tion. In the Pleadings Game, argumentation was viewed
procedurally, as dialogues regulated by protocols, but this
was accomplished by building a procedural layer on top of
a nonmonotonic logic. The system presented here abandons
the relational interpretation of argumentation entirely, in
favor of a purely procedural view, and is thus more in line
with modern argumentation theory in philosophy. We are
not suggesting that logic no longer has an important role
to play, but only that argumentation cannot be reduced to
logic.

The rest of this paper is organized as follows. First, we
provide an informal introduction and overview of a language
for legal rules, including some examples. This is followed
by the formal definition of the syntax of this rule language.
Then we define the semantics for the rule language, by map-
ping rules to argumentation schemes, using our Carneades
model of argument [2]. The final section recapitulates the
main results and discusses future work.

2. INFORMAL OVERVIEW
For simplicity and readability, we will be using a con-

crete syntax based on Lisp s-expressions to represent rules.
Variables will be represented as symbols beginning with a
question mark, e.g. ?x or ?y. Other symbols, as well as
numbers and strings, represent constants, e.g. contract,
23.1, or "Jane Doe".

An atomic sentence is a simple declarative sentence, con-
taining no logical operators, such as negation, conjunction or
disjunction. The sentence “The mother of Caroline is Ines.”
can be represented as (mother Caroline Ines), which has
the form (<predicate> <subject> <object>).

If P is an atomic sentence, then (not P) is a negated
atomic sentence. Sentences which are either atomic sen-
tences or negated atomic sentences are called literals. The
complement of a literal Q is P, if Q equals (not P), or
(not P), if Q equals P.

Rules are reified in this language, with an identifier and a
set of properties, enabling any kind of meta-data about rules
to be represented, such as a rule’s date of enactment, issuing
governmental authority, legal source text, or its period of
validity. We do not define these properties here. Our focus
is on defining the syntax and semantics of these rules.

Rules have a body and a head . The terms ‘head’ and
‘body’ are from logic programming, where they mean the
conclusions and antecedents of a rule, respectively, inter-
preted as Horn clauses. Unlike Horn clause logic, a rule in

1Technically speaking, the rules in PRATOR also may be
viewed as domain-dependent inference rules, since they may
not be used contrapositively, but nonetheless they are for-
mulated as sentences in the object language.

our system may have more than one conclusion, including,
as will be explained shortly, negated conclusions.

Here is first example, a simplified reconstruction of a rule
from the Article Nine World of the Pleadings Game [1],
meaning that all movable things except money are goods.

(rule §-9-105-h
(if (and (movable ?c)

(unless (money ?c)))

(goods ?c)))

‘§-9-105-h’ is an identifier, naming the rule, which may be
used as a term denoting the rule in other rules.

We use the term condition to cover both literals and
the forms (unless P), called exceptions, and (assuming P),
called assumptions, where P is a literal. The head of a rule
consists of a list of literals. Notice that, unlike Horn clause
logic, rules may have negative conclusions. Negated atomic
sentences may also be used in the body of a rule, also in
exceptions and assumptions. Exceptions and assumptions
are allowed only within the body of rules. The example rule
above illustrates the use of an exception.

Legal rules are defeasible generalizations. Showing that
some exception applies is one way to defeat a rule, by under-
cutting [5] it. A rule applies if its conditions are acceptable,
unless some exception applies. A party who wants to apply
this rule need not show that the exception does not apply.
The burden of producing evidence that the exception does
apply is on the other party. Assumptions on the other hand,
as their name suggests, are assumed to hold until they are
questioned.

Another source of defeasibility is conflicting rules. Two
rules conflict if one can be used to derive P and another
(not P). To resolve these conflicts, we need to be able to
reason (i.e. argue) about which rule has priority. To support
reasoning about rule priorities, the rule language includes a
built-in predicate over rules, prior, where (prior r1 r2)

means that rule r1 has priority over rule r2. If two rules
conflict, the arguments constructed using these rules are said
to rebut each other, following Pollock [5].

The priority relationship on rules is not defined by the
system. Rather, priority is a substantive issue to be rea-
soned (argued) about just like any other issue. One way to
construct arguments about rule priorities is to apply the ar-
gumentation scheme for arguments from legal rules to meta-
level rules, i.e. rules about rules, using information about
properties of rules, such as their legal authority or date of
enactment. The reification of rules and the built-in priority
predicate make this possible. In knowledge bases for par-
ticular legal domains, represented using this rule language,
rules can be prioritized both extensionally, by asserting facts
about which rules have priority over which other rules, and
intensionally, using meta-rules about priorities.

For example, assuming metadata about the enactment
dates of rules has been modeled, the legal principle that
later rules have priority of earlier rules, lex posterior, can be
represented as:

(rule lex-posterior

(if (and (enacted ?r1 ?d1)

(enacted ?r2 ?d2)

(later ?d2 ?d1))

(prior ?r2 ?r1)))

2

Rules can be defeated in two other ways: by challeng-
ing their validity or by showing that some exclusionary
conditions apply. These are modeled with rules about
validity and exclusion, using two further built-in predicates:
(valid <rule>) and (excluded <rule> <literal>),
where <rule> is a constant naming the rule, not its defi-
nition. The second argument of the excluded predicate is
a compound term representing a literal. Thus, literals can
also be reified in this system.

The valid and excluded relations, like the prior relation,
are to be defined in domain models. Rules can be used for
this purpose. For example, the exception in the previous
example about money not being goods, even though money
is movable, could have been represented as an exclusionary
rule as follows:

(rule §-9-105-h-i
(if (money ?c)

(excluded §-9-105-h (goods ?c))))

To illustrate the use of the validity property of rules, imag-
ine a rule which states that rules which have been repealed
are no longer valid:

(rule repeal

(if (repealed ?r1)

(not (valid ?r1))))

Notice the use of negation in the conclusion (head) of this
rule.

3. SYNTAX
This section presents a formal definition of an s-expression

syntax for rules, in Extended Backus-Naur Form (EBNF)2.
This syntax is inspired by the Common Logic Interchange
Format (CLIF) for first-order predicate logic, which is part
of the draft ISO Common Logic standard.3 While inspired
by CLIF, no attempt is made to make this rule language
conform to Common Logic standard.4

The syntax uses the Unicode character set. White space,
delimiters, characters, symbols, quoted strings, Boolean val-
ues and numbers are lexical classes, not formally defined
here. For simplicity and to facilitate the development of a
prototype inference engine using the Scheme programming
language, we will use Scheme’s lexical structure, as defined
in the R5RS standard, extended to support the Unicode
character set.5

Variable and Constant Symbols
variable ::= symbol

constant-symbol ::= symbol

Variable and constant symbols are disjunct. A variable
begins with a question mark character. Symbols are case-
sensitive. Constant symbols may include a prefix denoting a

2EBNF is specified in the ISO/IEC 14977 standard.
3http://philebus.tamu.edu/cl/
4Common Logic is a family of concrete syntaxes for first-
order predicate logic, with its model-theoretic semantics and
classical, monotonic entailment relation. These semantics
are sufficiently different as to not make it useful to attempt
to make the syntax of our rule language fully compatible
with CLIF.
5http://www.schemers.org/Documents/Standards/R5RS/

namespace. Some mechanism for binding prefixes to names-
paces is presumed in this report, rather than being defined
here. The prefix of a constant symbol is the part of the
constant symbol up to the first colon. The part of the con-
stant symbol after the colon is the local identifier, within
this namespace.

Here are some example variable and constant symbols:

?x

?agreement

contract-1

lkif:permission

event-calculus:event

Term
A term is either a constant or a compound term. A con-
stant is either a variable, constant symbol, string, number,
or Boolean value. A compound term consists of a constant
symbol and a list of terms.

constant ::= variable | constant-symbol

| string | number | Boolean

term ::= constant | | ’´’ term |

’(’ constant-symbol term* ’)’

Quoted terms are used, as in Lisp, to denote lists. Here
are some example terms:

?x

contract-1

"Falkensee, Germany"

12.345

#t

(father-of John)

’(red green)

Literal
Literals are atomic sentences or negations of atomic sen-
tences.

atom ::= constant-symbol

| ’(’ constant-symbol term* ’)’

literal ::= atom | ’(’ ’not’ atom ’)’

Notice that constant symbols can be used as atomic sen-
tences. This provides a convenient syntax for a kind of
propositional logic.

The following are examples of literals:

liable

(initiates event1 (possesses ?p ?o))

(holds (perfected ?s ?c) ?p)

(children Ines ’(Dustin Caroline))

(not (children Tom ’(Sally Susan)))

(applies UCC-§-306-1 (proceeds ?s ?p))

Rule
This rule language generalize the syntax of Horn clause logic
in the following ways:

1. Rules are reified with names.

2. Rules may have multiple conclusions.

3

3. Negated atoms are permitted in both the body and
head of rules.

4. Rule bodies may include exceptions and assumptions.

5. Negated atoms are allowed in exceptions
and assumptions, e.g. (unless (not p)) or
(assuming (not p)).

Here is the formal definition of the syntax of rules:

rule ::= ’(’ ’rule’ constant-symbol

’(’ ’if’ body head ’)’ ’)’

| ’(’ ’rule’ constant-symbol

literal literal* ’)’

head :== literal

| ’(’ ’and’ literal literal+ ’)’

body :== condition

| ’(’ ’and’ condition condition+ ’)’

condition :== literal

| ’(’ ’unless’ literal ’)’

| ’(’ ’assuming’ literal ’)’

The second rule form is convenient for rules with empty
bodies. These should not be confused with Prolog ‘facts’,
since they are also defeasible. Conditions which are not
assumptions or exceptions are called ordinary conditions.

Here are a few examples of rules and facts, reconstructed
from the Article Nine World of the Pleadings Game [1]:

(rule §-9-306-1
(if (and (goods ?s ?c)

(consideration ?s ?p)

(collateral ?si ?c)

(collateral ?si ?p)

(holds (perfected ?si ?c) ?e)

(unless (applies §-9-306-3-2
(perfected ?si ?p))))

(holds (perfected ?si ?c) ?e)))

(rule §-9-306-2a
(if (and (goods ?t ?c)

(collateral ?s ?c))

(not (terminates ?t

(security-interest ?s)))))

(rule F1 (not (terminates T1

(security-interest S1))))

(rule F2 (collateral S1 C1))

Reserved Symbols
The following predicate symbols have special meaning in the
semantics, as explained in Section 4, and are thus reserved:
prior, excluded, valid, and applies.

4. SEMANTICS
We now proceed to define the semantics of this rule lan-

guage. Due to space limitations, knowledge of the Carneades
model of argument [2] is presumed. A rule denotes a set of
argumentation schemes, one for each conclusion of the rule,
all of which are subclasses of a scheme for arguments from

legal rules.6 Applying a rule is a matter of instantiating
one of these argumentation schemes to produce a particular
argument. Reasoning with rules is viewed as a process of ap-
plying these schemes to produce arguments to put forward
in dialogues.

The scheme for arguments from legal rules is based on
the rule language we developed for the Pleadings Game [1],
but has also been influenced by Verheij’s reconstruction of
Reason-Based Logic in terms of argumentation schemes [8].
The scheme can be defined informally as follows:

Premises

1. r is a legal rule with ordinary conditions
a1, . . . , an and conclusion c.

2. Each ai in a1 . . . an is presumably true.

Conclusion. c is presumably true.

Critical Questions.

1. Does some exception of r apply?

2. Is some assumption of r not met?

3. Is r a valid legal rule?

4. Does some rule excluding r apply in this case?

Our task now is use this scheme to define the semantics
of the formal language of Section 3, by mapping rules in the
language to schemes for arguments in Carneades. We begin
by mapping rule conditions to argument premises.

Definition 1 (Condition to Premise) Let p be a func-
tion mapping conditions of rules to argument premises, de-
fined as follows:

p(c) =

8<: c if c is a literal
•s if c is (assuming s)
◦s if c is (unless s)

If a conclusion of a rule is an atomic sentence, s, then
the rule is mapped to a scheme for arguments pro s. If a
conclusion of the rule is a negated atomic sentence, (not s),
then the rule is mapped to a scheme for arguments con s.

Definition 2 (Scheme for Arguments from Rules)
Let r be a rule, with conditions a1 . . . an and conclusions
c1 . . . cn. Two premises, implicit in each rule, are made
explicit here. The first, •v, where v = (valid r), makes the
assumption that r is a valid legal rule explicit. The second,
◦e, where e = (excluded r ci), expresses the exception
that r is excluded with respect to ci.

For each ci in c1 . . . cn of r, r denotes an argumentation
scheme of the following form, where d is ‘pro’ if ci is an
atomic sentence and ‘con’ if ci is a negated atomic sentence:

p(a1) . . . p(an), •v, ◦e
d ci

6We do not claim that argumentation schemes can be mod-
eled as or reduced to defeasible generalizations. Here we
go in the other direction: each legal rule is interpreted as a
defeasible generalization and mapped to a set of argumen-
tation schemes.

4

To construct an argument from one of these argumenta-
tion schemes, the variables in the scheme need to be system-
atically renamed and then instantiated using a substitution
environment , i.e. a mapping from variables to terms, con-
structed by unifying the conclusion of the argumentation
scheme with some goal atomic statement, as in logic pro-
gramming.

The valid and excluded relations used in the argumenta-
tion scheme are to be defined in the models of legal domains,
as explained in Section 2.

Conflicts between competing pro and con arguments are
resolved using a priority relation over rules. In Carneades,
such a relation is assumed as part of the context. Rules can
be used to define the priority relation, as in the Pleadings
Game [1] and PRATOR [6]. Legal principles for resolving
rule conflicts, such as lex posterior, can be modeled in this
way, as illustrated in Section 2.

The applies predicate is a ‘built-in’, meta-level relation
which cannot be defined directly in rules. It is defined as
follows:

Definition 3 (Applies) Let σ be a substitution environ-
ment and G be an argument graph. Let r be a rule and S
be the set of argumentation schemes for r, with all of the
variables in these schemes systematically renamed. There
are two cases, for atomic sentences and negated atomic sen-
tences. The rule r applies to a sentence in σ and G if there
exists a pro argumentation scheme s in S, if the sentence is
atomic, p, or a con argumentation scheme, if the sentence
is negated, (not p), such that the conclusion of s is unifi-
able with p in σ, and every premise of s, with its variables
substituted by their values in the σ, holds in G.

Given a set of rules and an argument graph, this defini-
tion of the applies predicate enables some meta-level rea-
soning. It allows one to identify the rules which can be
used to generate defensible pro and con arguments for some
goal statement or to check whether a particular rule can be
used to generate a defensible pro or con argument for some
statement.

The semantics of negation is dialectical, not classical nega-
tion or negation-as-failure. Exceptions also do not have
the semantics of negation-as-failure. The closed-world as-
sumption is not made. In Carneades, a negated sentence,
(not p), is acceptable just when the complement of the
proof standard assigned to p is satisfied, where the com-
plement of a proof standard is constructed by reversing the
roles of pro and con arguments in the standard. See [2] for
details.

5. CONCLUSION
The rule language presented here is syntactically similar

to the rule languages of the Pleadings Game [1] and the
PRATOR system [6]. Our main original contribution is the
particular argumentation-theoretic semantics we have given
these rules, by mapping them to argumentation schemes us-
ing the Carneades model of argument. This approach has
at least two advantages:

1. The system can be extended with comparable mod-
els of other argumentation schemes, e.g. for reasoning
with evidence, ontologies or precedent cases. Argu-
mentation schemes provide a unifying framework for
building hybrid reasoners.

2. The semantics is purely procedural, in line with Loui’s
‘Process and Policy’ work, Rawl’s concept of procedu-
ral justice [7] and the modern procedural perspective
of argumentation in philosophy [9]. Despite the ex-
pressiveness of the rule language, which would result
in an undecidable logic using the relational approach,
argumentation protocols can be defined for using these
rules in legal proceedings which are guaranteed to ter-
minate with legally correct conclusions.

A prototype inference engine for this rule language has al-
ready been fully implemented in Scheme, a dialect of Lisp.
Due to lack of space, a description of the implementation as
well further examples must more await a more complete fu-
ture publication. Our work in the near future, together with
our colleagues in the European ESTRELLA project, will fo-
cus on extending this system with computational models of
schemes for arguments from ontologies, case law and evi-
dence, especially testimonial evidence, and validating the
prototype in pilot applications, probably in the domain of
tax law.

6. ACKNOWLEDGMENTS
The work reported here was conducted as part of the Eu-

ropean ESTRELLA project (IST-4-027655). I would like
to thank Alexander Boer, Trevor Bench-Capon, Tom van
Engers, Jonas Pattberg, Henry Prakken, Doug Walton, and
Adam Wyner for fruitful discussions about topics related
to this paper. I would also like to thank the anonymous
reviewers for inviting me to be succinct.

7. REFERENCES
[1] T. F. Gordon. The Pleadings Game; An Artificial

Intelligence Model of Procedural Justice. Springer, New
York, 1995. Book version of 1993 Ph.D. Thesis;
University of Darmstadt.

[2] T. F. Gordon, H. Prakken, and D. Walton. The
Carneades model of argument and burden of proof.
Artificial Intelligence, 2007. In Press.

[3] J. C. Hage. Monological reason-based logic. a low level
integration of rule-based reasoning and case-based
reasoning. In Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, pages
30–39, New York, 1993. ACM.

[4] R. P. Loui. Process and policy: resource-bounded
non-demonstrative reasoning. Computational
Intelligence, 14:1–38, 1998.

[5] J. Pollock. Defeasible reasoning. Cognitive Science,
11(4):481–518, 1987.

[6] H. Prakken and G. Sartor. A dialectical model of
assessing conflicting argument in legal reasoning.
Artificial Intelligence and Law, 4(3-4):331–368, 1996.

[7] J. Rawls. A Theory of Justice. Belknap Press of
Harvard University Press, 1971.

[8] B. Verheij. Dialectical argumentation with
argumentation schemes: An approach to legal logic.
Artificial Intelligence and Law, 11(2-3):167–195, 2003.

[9] D. Walton. Fundamentals of Critical Argumentation.
Cambridge University Press, 2006.

5

