
IST-2004-027655

ESTRELLA
European project for Standardised Transparent Representations in

order to Extend Legal Accessibility

Specific Targeted Research Project
Information Society Technologies

Deliverable 4.1

The Legal Knowledge Interchange Format (LKIF)

Due date of deliverable: 15 September 2008
Actual submission date: 15 September 2008

Start date of project: 1 January 2006 Duration: 30 months

Fraunhofer FOKUS

FINAL

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Executive Summary

This reports specifies the final version of the Legal Knowledge Interchange Format
(LKIF) developed in the European ESTRELLA project.

LKIF is an XML Schema for representing theories and arguments (proofs) con-
structed from theories. A theory in LKIF consists of a set of axioms and defeasible
inference rules. The language of individuals, predicate and function symbols used by
the theory can be imported from an ontology represented in the Web Ontology Lan-
guage (OWL). Importing an ontology also imports the axioms of the ontology. All
symbols are represented using Universal Resource Identifiers (URIs). Other LKIF
files may also be imported, enabling complex theories to modularized.

Axioms are named formulas of full first-order logic. The heads and bodies of
inference rules are sequences of first-order formulas. All the usual logical operators
are supported and may be arbitrarily embedded: disjunction (∧), conjunction (∨),
negation (¬), material implication (→) and the biconditional (↔). Both existential
(∃) and universal (∀) quantifiers are supported. Free variables in inference rules
represent schema variables.

Terms in formulas may be atomic values or compound expressions. Values are
represented using XML Scheme Definition (XSD) datatypes. Atomic formulas are
reified and can be used as terms, allowing some meta-level propositions to be ex-
pressed.

The schema for atomic formulas has been designed to allow theories to be dis-
played and printed in plain, natural language, using Cascaded Style Sheets (CSS).
An atomic proposition may first be represented in propositional logic, using natural
language, and later enriched to become a first-order model, by marking up the vari-
ables and constants of the proposition and specifying its predicate using an XML
attribute. This feature of LKIF is essential for enabling domain experts, not just
computer specialists, to write and validate theories.

Support for allocating the burden of proof when constructing arguments from
theories in dialogues is provided. An assumable attribute is provided for atomic
formulas, to indicate they may be assumed true until they are challenged or ques-
tioned. An exception attribute is provided for negated formulas, to indicate that ¬P
may be presumed true unless P has been proven. Making a negated formula, ' P ,
an exception shifts the burden of proof for P to the opponent of P in the dialogue.
Unlike negation-as-failure in logic programming, exceptions do not depend on the
closed-world assumption.

Arguments in LKIF link a sequence of premises to a conclusion, where both the
premises and the conclusion are atomic formulas. Attributes are provided for stating
the direction of the argument (pro or con), the argumentation scheme applied and

3

4

the role of each premise in an argument. Arguments can be linked together to form
argument graphs. The legal proof standard each proposition at issue must satisfy,
such as “preponderance of the evidence” or “beyond reasonable doubt” may be
specified. Attributes are provided for recording the relative weight assigned to each
argument by the finder of fact, such as the jury, or some other audience, as well as
the status of each issue in the proceeding.

All of the main elements of an LKIF file may be assigned Universal Resource
Identifiers, allowing them to be referenced in other documents, anywhere on the
World Wide Web. Cross references between elements of legal source documents and
the elements of the LKIF document which model these sources may be included
within the LKIF file, using a sequence of source elements. The scheme allows m
to n relationships between legal sources and elements of the LKIF model to be
represented.

LKIF builds on and uses many existing World Wide Web standards, including the
XML, Universal Resource Identifiers, XML Namespaces, the Resource Description
Framework (RDF) and the Web Ontology Language (OWL). However, for a variety
of reasons it does not use other XML schemas for modeling legal rules, such as
Common Logic, RuleML, the Semantic Web Rule Language (SWRL), or the Rule
Interchange Format. Common Logic is an ISO standard for representing formulas
of first-order classical logic. While LKIF includes a sublanguage for first-order logic,
LKIF has been designed to allow formulas of first-order logic to be represented in
human readable form in natural language, to ease development, maintenance and
validation by domain experts. Moreover, the ISO Common Logic standard does not
look like it will be widely adopted within the World Wide Web community, which
has its own standards body, the World Wide Web Consortium. RuleML, SWRL and
RIF, among other efforts, are competing to become the Web standard for rules. At
the beginning of the ESTRELLA project, SWRL was the leading candidate. In the
meantime, during the development of LKIF in Estrella, RIF has become the leading
contender. But neither SWRL nor RIF are currently expressive enough for the
legal domain. Legal rules can best be understood as domain-dependent defeasible
inference rules. They cannot be adequately modeled as material implications in first-
order logic. However, an LKIF theory can in principal import a first-order theory
represented in any XML format, to be used as part of the axioms of the theory. This
feature of LKIF enables a part of the legal theory to be represented in first-order
logic, using whatever format eventually becomes the World Wide Web standard.

This final version of LKIF has changed substantially since the first version, pub-
lished in ESTRELLA Deliverable D1.2 in January, 2007. LKIF is no longer defined
as an OWL ontology, but as an XML schema, since LKIF’s main purpose is to
serve as an interchange format which is easy to translate to and from other formats.
LKIF has been designed to make this task easier, for example by writing translators
in the Extensible Style Sheet Language Transformations (XSLT) language. OWL
documents have many serializations. LKIF serves as a kind of standard, canonical
serialization. (OWL is still used for the LKIF basic ontology of legal concepts and is
the LKIF standard for defining ontologies of legal domains.) The Lisp s-expression
syntax for rules is still supported by the LKIF reference inference engine, but is no
longer a normative part of the LKIF specification. Vendors do not need to support

5

the s-expression syntax to be LKIF compliant. Finally, whereas Deliverable D1.3
was a lengthy report with an extensive section on requirements and a survey of ex-
isting knowledge representation languages and technologies, this report aims to be
a concise specification of LKIF.

The Legal Knowledge Interchange Format
(LKIF)
ESTRELLA Deliverable D4.1

Thomas F. Gordon
Fraunhofer FOKUS, Berlin

Contents

1 Overview 2

2 Formulas 4
2.1 Terms . 4
2.2 Atomic Formulas . 5
2.3 Compound Formulas . 7

3 Rules 10

4 Theories 15

5 Argument Graphs 23

6 Sources 29

A Acronyms 31

B LKIF Schema 32

ESTRELLA
p/a Faculty of Law
University of Amsterdam
PO Box 1030
1000BA Amsterdam
The Netherlands

tel: +31 20 525 3485/3490

fax: +31 20 525 3495

http://www.estrellaproject.org

Corresponding author:
Thomas F. Gordon
thomas.gordon@fokus.fraunhofer.de

0

file://localhost/Users/tgo/Documents/Projects/ESTRELLA/WP4/D4.1%20LKIF/thomas.gordon@fokus.fraunhofer.de
http://www.estrellaproject.org

Contents

1

Chapter 1

Overview

The Legal Knowledge Interchange Format (LKIF) is an XML schema for represent-
ing axiomatizations of theories in formal logic and proofs of propositions constructed
from these theories.

As its name suggests, LKIF has been developed primarily for applications in the
legal domain. Its development was driven by the requirements of applications of legal
knowledge systems, from vendors of legal knowledge systems, public administrators
and experts in the field of artificial intelligence and law. These legal requirements
distinguish LKIF from related efforts to develop XML formats for rules, such as
RuleML, the Semantic Web Rule Language (SWRL) or the Rule Interchange Format
(RIF). Whereas these other rule languages are intended for representing production
rules or first-order logic, moreover usually some subset of first-order logic whose
proof theory has interesting computational properties, LKIF is intended to model
legal rules of the kind found in legislation and regulations. Legal rules cannot be
modeled adequately as either production rules or as material implications in first-
order logic without losing the structure of the rules of the legislation and abstracting
away its allocation of the burden of proof. While there are several interpretations
of legal rules in legal theory, in LKIF legal rules are modeled as defeasible inference
rules, since legal rules do not contrapose, i.e. may not be used backwards, and
the conclusion of an applicable legal rule is only presumptively true, not necessarily
true. When several rules are applicable, conflicts among the rules are resolved
by reasoning about rule priorities, using meta-level legal rules such as lex superior
(prefer the rule from higher authority) and lex posterior (prefer the newer rule).
Also, there are several ways to undercut the applicability of legal rules, such as by
showing that the rule has been repealed and is no longer valid law.

In this report, Relax NG’s compact, human readable syntax [Clark, 2003] will
be used to present the grammar of the LKIF schema. The grammar can be auto-
matically converted into an Extensible Schema Definition (XSD).

2

CONTENTS 3

The top-level structure of an LKIF file has this form:

element lkif {
attribute version { xsd:string }?,
Sources?, Theory?, ArgumentGraphs?

}

The version attribute is used to provide the version number of the LKIF schema
used by the model, not the version number of the model. LKIF, as an interchange
format, is intended to be translated to and from other formats, such as the pro-
prietary formats of vendors. The version attribute enables translators to evolve to
support future versions of LKIF while remaining backwards compatible, to continue
to support models represented using prior LKIF versions.

The three top elements of an LKIF file are all optional. The Sources element is
for linking elements of an LKIF file to the legal source texts modeled by the element.
The Theory element provides a way to model the axioms and inferences rules of a
legal theory. Finally, the ArgumentGraphs element provides a way to model one or
more sets of interlinked arguments constructed from the theory. An ArgumentGraph
models a legal proof of a proposition at issue, whereby ‘proof’, we mean proof in the
legal sense, not in the sense of deductive proofs in classical logic. The proposition
proved need not be necessarily true. It is sufficient that arguments pro and con the
proposition satisfy the applicable legal proof standard, such as “preponderance of
the evidence”, in civil cases, or “beyond reasonable doubt”, in criminal cases.

The rest of this report is organized as follows. In Chapter 2, the LKIF for-
mat for formulas in propositional and predicate logic is presented. The grammar of
formulas is presented first, since formulas are used in both theories and argument
graphs. Chapter 3 presents the LKIF format for defeasible inference rules, intended
mainly for modeling legal rules. Chapter 4 presents the LKIF grammar for axiom-
atizations of theories, consisting of a axioms and a set of defeasible inference rules
for deriving conclusions from the axioms. Chapter 5 presents the LKIF formats
for arguments and argument graphs, which are used to represent proofs. Finally,
Chapter 6 describes how to link elements of an LKIF model to the source documents
being modeled.

Chapter 2

Formulas

LKIF can represent both propositional and first-order logic formulas. All of first-
order logic is supported, with extensions for representing meta-leval propositions
about atomic propositions and annotating formulas with information needed for
allocating the burden of proof. The schema for atomic formulas enables formulas to
be entered and displayed in readable, semi-natural language, using Cascaded Style
Sheets (CSS). This feature of LKIF is designed to make it easier for legal experts,
with little specialized training in computer technology, to construct, maintain and
validate formal models of the law.

2.1 Terms

A logical Term is a variable, individual, constant, expression or an atom.

Term = Variable | Individual | Constant | Expression | Atom

Variables represent both schema variables in inference rules and logical variables
in first-order formulas.

Variable = element v { xsd:Name }

The content of a variable is restricted to be a symbol complying with the lexical
syntax of the XSD Name datatype.1. That is, the variable name must begin with
a letter, underscore character or colon and may be followed by any number of al-
phanumeric charcters. White space is not allowed in variable name. Here are two
examples of variables:

<v>x</x>
<v>buyer</v>

There are two ways to represent logical constants, using the c and i elements. The
c element allows XSD symbols (names), URIs, strings, integers and floating point
numbers to be used as constants. The i, mnemonic for ‘individual’, is an alternative
way to represent constants using URIs which has the advantage of providing a way
to describe the object denoted by the constant in natural language, to facilitate
readability.

1http://www.w3.org/TR/xmlschema-2/

4

Section 2.2 Atomic Formulas 5

Constant = element c {
xsd:Name | xsd:anyURI | xsd:string |
xsd:boolean | xsd:integer | xsd:float

}

Individual = element i {
attribute value { xsd:anyURI },
text

}

Here are some examples of constants:

<c>John</c>
<c>http://www.estrellaproject.org</c>
<c>34.6</c>
<c>true</c>
<c>110</c>
<c>"this is a string"</c>
<i value="http://www.estrellaproject.org">The Estrella Website.</i>

Compound terms can be represented using expr (expression). The functor of a
compound term is represented as a URI, using an attribute of the expression element.
A compound term consists of zero or more subterms.

Expression = element expr {
attribute functor { xsd:anyURI },
Term*

}

Here is an example, showing how to represent the mathematical expression√
x + y:

<expr functor="sqrt">
<expr functor="sum"><v>x</v><v>y</v></expr>

</expr>

In this example, the URIs of the functors naming the square root and summing
functions are local names. A dictionary of functors could be modeled using an OWL
ontology, in which case the URI of the functor attribute of an expression should
reference the functor in the ontology.

2.2 Atomic Formulas

Atomics formulas are represented using s elements, where ‘s’ is intended to be
mnemonic for ‘statement’. The predicate symbol of an atomic formula is repre-
sented by a URI, using an attribute. The content model of the s element consists of
zero or more terms interspersed with free text, allowing statements to be formulated

6

in semi-natural language. This free text is intended to make statements easier for
humans to read and understand, but has no formal meaning. It serves the same
purpose as comments in computer programs. It is the responsibility of the modeler
or “knowledge engineer” to use this free text in a meaningful and consistent way.

Atom = element s {
attribute pred { xsd:anyURI }?,
attribute assumable { xsd:boolean}?, # default: false
((text | Term)*)

}

The assumable attribute of an atomic formula provides one way to annotate
formulas with meta-level information about the burden of proof in legal proceedings.
Depending on the applicable rules of legal procedure, an assumable formula may be
assumed to be true without proof or evidence until a party has made an issue out of
the statement using the appropriate procedure, motion or speech act. The assumable
attribute has no affect on logical, model-theoretic semantics of formulas.

The syntax of atomic formulas enables statements to first be represented in nat-
ural language, formalized only at the level of propositional logic, and later enriched
to a first-order predicate logic representation. For example, the statement “Joe is
the parent of Sally” can first be represented in propositional logic as:

<s>Joe is the parent of Sally</s>

and later enriched to a first-order logic representation to become:

<s pred="family:parent">
<c>Joe</c> is the parent of <c>Sally</c>

</s>

Here are two further examples of atomic formulas, illustrating the use of vari-
ables:

<s pred="family:parent">
<v>Person1</v> is a parent of <v>Person2</v>

</s>

<s pred="family:obligatedToSupport">
<v>Person1</v> is obligated to support <v>Person2</v>

</s>

Atomic formulas are reified in LKIF and may also be used as terms. This en-
ables meta-level propositions about atomic propositions to be expressed, such as
the following event calculus [Kowalski and Sergot, 1986] statement about a security
interest s being perfected at time t:

<s pred="holds"><s pred="perfected"><v>s</v></s><v>t</v></s>

Section 2.3 Compound Formulas 7

2.3 Compound Formulas

Compound formulas can be formed from atomic formulas using all the usual logical
operators as well as universal and existential quantifiers. A well-formed formula
(Wff) is an atomic formula or a compound formula constructed using one of these
operators or quantifiers:

Wff = Atom | Or | And | Not | If | Iff | All | Exists

The logical disjunction P ∨Q is represented using an or element.

Or = element or {
attribute assumable { xsd:boolean }?,
Wff, Wff+

}

The assumable attribute of all formulas, not just disjunctions, is optional. If
the attribute is not supplied, its default value is false. An assumable formula may
be added to the set of axioms of the theory under construction during a dialogue.
Questioning this assumption would cause the formula to be removed from the set of
axioms.

Here’s the LKIF representation of P ∨Q:

<or>
<s>P</s>
<s>Q</s>

</or>

The logical conjunction P ∧Q is represented using a and element.

And = element and {
attribute assumable { xsd:boolean }?,
Wff, Wff+

}

Here’s the LKIF representation of P ∧Q:

<and>
<s>P</s>
<s>Q</s>

</and>

Notice that both or and and elements consists of two or more well-formed for-
mulas, not just two. Thus, for example, P ∨Q ∨R can be represented as:

<or>
<s>P</s>
<s>Q</s>
<s>R</s>

</or>

8

Negated formulas, such as ¬P , are represented using not elements.

Not = element not {
attribute exception { xsd:boolean }?,
attribute assumable { xsd:boolean }?,
Wff

}

Using this syntax, ¬P is represented in LKIF as:

<not><s>P</s></not>

The semantics of negation, indeed for all well-formed formulas in LKIF, is classi-
cal. In particular, not does not mean “negation-as-failure”, as used in logic program-
ming languages such as Prolog [Clocksin and Mellish, 1981]. The exception attribute
of a negated formula ¬P can be used to assign the burden of proof for P to the party
who opposes ¬P . An exception ¬P is presumably true unless the opponent of ¬P
has proven P . The proof-theoretic effect is similar to negation-as-failure in logic
programming, but without defining a nonmonotonic inference relation or making
the closed-world assumption. The assumable and exception attributes of a negated
formula are orthogonal. If ¬P is assumable, then ¬P may be added to the axioms
of the theory under construction. Merely questioning the assumption is enough to
cause the formula to be removed from the axioms, without having to prove P . If
¬P is an exception, used as a premise in a defeasible inference rule Q ⇐ ¬P , then
the burden of proving P is on the opponent of Q. That is, the rule may be used
to conclude that Q is presumably true without first having to prove P . But the
opponent of Q can later defeat the presumption by proving P .

Material implications, such as P → Q are represented in LKIF using if elements.

If = element if {
attribute assumable { xsd:boolean }?,
Wff, Wff

}

Here is the example P → Q using this syntax:

<if>
<s>P</s>
<s>Q</s>

</if>

Biconditionals, such as P ↔ Q, are represented in LKIF using iff elements.

Iff = element iff {
attribute assumable { xsd:boolean }?,
Wff, Wff

}

Section 2.3 Compound Formulas 9

The assumable attribute is optional. If the attribute is not supplied, its default
value is false.

Here’s the P ↔ Q example in LKIF:

<iff>
<s>P</s>
<s>Q</s>

</iff>

Finally, the universal and existential quantifiers, ∀x.P (x) and ∃x.P (x), respec-
tively, are represented in LKIF using all and exists elements.

All = element all {
attribute assumable { xsd:boolean }?,
Variable+, Wff
}

Exists = element exists {
attribute assumable { xsd:boolean }?,
Variable+, Wff

}

For example:

<all>
<v>x</v>
<s pred="P"><v>x</v></s>

</all>

<exists>
<v>x</v>
<s pred="P"><v>x</v></s>

</exists>

Well-formed formulas Wffs in LKIF are just an XML concrete syntax for first-
order predicate logic, extended with some attributes for annotating formulas with
information about the burden of proof. These extensions have no effect on the first-
order semantics of formulas. The concepts of logical consequence and contradiction
have their usual, classical meaning without change.

Chapter 3

Rules

There are many kinds of rules and thus many kinds of rule languages. In logic, rules
may be interpreted as material implications, i.e. as a kind of logical operator for
constructing formulas, or as inference rules for deriving formulas from axioms. In
computer science, production rules have been developed as a part of a programming
paradigm in which rules are applied to data stored in working memory. Formal
languages are defined using grammar rules. In law, rules provide one way to express
norms, principals and regulations.

Since LKIF is designed as an XML format for interchanging models of legal
knowledge, the kind of rules we are interested in modeling are legal rules. Legal
rules express public policy, not only about how to act, but also about how to reason
legally about situations and actions. For example, the definition of murder as the
“unlawful killing of a human being with malice aforethought” expresses both the
policy against the intentional killing of another human being and the reasoning
policy to presume that a murder has been committed if it has been proven that a
human being has been killed intentionally.

Legal rules can be viewed as domain dependent inference rules, complementing
and extending the universally applicable and generic inference rules of classical logic,
such as modus pollens or modus tollens. Aside from being domain-dependent, an-
other difference between legal rules and the inference rules of classical logic is that
the conclusion of a legal rule need not be necessarily true. Typically, the conclusion
of a legal rule is only presumptively true. The rules of legal procedure regulate the
construction and evaluation of arguments from legal rules. It may be possible to
construct conflicting arguments from several rules. The law provides ways to re-
solve these conflicts, using meta-leval principals, such as lex superior (prefer the rule
from the higher authority), and by using procedural measures, such as allocating
the burden of proof.

LKIF has been designed to be sufficiently expressive to support the isomorphic
modeling [Bench-Capon and Coenen, 1992] of legislation, at a very high level, in or-
der the facilitate the development, validation and maintenance of knowledge bases
by legal experts, the rule language is more expressive than formulas of first-order
logic, let alone subsets of first-order logic, such as Horn clause logic or description
logic, which have been developed due to interesting computational properties, such
as (semi-)decidability or even tractability. LKIF has been designed to optimize ex-
pressiveness for the legal domain, not computational efficiency. LKIF is designed

10

Section 2.3 Compound Formulas 11

for use in interactive systems which help users to construct theories and arguments,
as well as traditional expert systems, which interactively acquire facts and deduce
propositions from these facts by applying rules. For argument construction tasks,
the expressivity of the knowledge representation language is more important than
the computational properities of the inference relation, since users are reponsible
for controlling the search for arguments. For traditional expert system, the com-
putational properties of the inference relation may be more important, since the
inference engine is expected to fully automatically derive logical conclusions from
the facts input by the user. LKIF has been designed to be expressive enough for
both kinds of systems, but when using LKIF for traditional expert systems, the
knowledge engineers should take case to use a subset of LKIF which can be handled
by inference engines with the desired computational properties.

From a computational perspective, the semantics of LKIF rules is based on the
dialectical and argumentation-theoretic approach articulated by Ron Loui in “Pro-
cess and Policy: Resource-Bounded Non-Demonstrative Reasoning” [Loui, 1998].
Essentially, legal rules are interpreted as policies for reasoning in resource-limited,
decision-making processes. In argumentation theory such reasoning policies are
viewed as inference rules for presumptive reasoning, called argumentation schemes
[Walton, 2006]. Arguments are instances of argumentation schemes, constructed
by substituting variables of a scheme with terms of the object language. An argu-
ment graph is a proof constructed from a set of arguments. A set of argumentation
schemes defines a search space over argument graphs. Reasoning with argumenta-
tion schemes can be viewed as heuristic search in this space, looking for argument
graphs in which some disputed claim is acceptable or not given the proof repre-
sented by the argument graph. In dialogues, the parties take turns searching this
space, looking for counterarguments. Turn-taking, termination conditions, resource
limitations and other procedural parameters are determined by the rules of the legal
proceeding, i.e. by the argumentation protocol for the particular type of proceeding.
See [Gordon, 2007a] for further details about the semantics of LKIF rules.

A rule in LKIF consists of an identifier, a head and an optional body, where both
the head and the body, if there is one, consist of one or more well-formed formulas
of first-order predicate logic.

Rule = element rule {
attribute id { xsd:ID },
attribute strict { xsd:boolean }?,
Head, Body?

}

Head = element head { Wff+ }
Body = element body { Wff+ }

The strict attribute of rules provides a way to state, for instances of the rule,
that the formulas in the head of an instance of the rule are necessarily true when
the formulas in the body of the instance of the rule are true. Whether this is in fact
the case, or whether instead the rule is subject to exceptions or capable of being

12

overridden by other rules, is a modeling issue. It is the responsibility of author of
the rule to model the rules of the legal domain correctly. The strict attribute is a
meta-leval annotation which has no affect on the argumentation-theoretic semantics
of rules but may be useful for heuristic purposes.

Notice that LKIF rules are much more expressive than Horn clauses of the kind
used in logic programming languages such as Prolog. The body consists of arbitrary
formulas of first-order logic, not just literals. The head also consists of arbitrary
formulas of first-order logic, rather than, as in Horn clauses, a single positive literal.
Negated formulas may appear in both the body and head of rules. Negation is
interpreted classically, not as negation as failure. (However, the exception attribute
of negated formulas can be used to allocate the burden of proof to the desired party.)
Rule identifiers can be used as to refer to rules in other rules. The properties of
rules, such as their date of enactment, may be expressed; and, using these properties,
conflicts among rules can be resolved by using rules to reason about priorities among
rules.

All of the extensions are useful for modeling law, particularly if one is in-
terested, as we are, in modeling law in a way which preserves its organi-
zation and structure, called ‘isomorphic modeling” in the AI and Law field
[Bench-Capon and Coenen, 1992]. Legislation is typically organized as general rules
with separately stated exceptions. Other rules, such as the legal principals of lex su-
perior (prefer the rule from the higher authority) and lex posterior (prefer the later
rule) are used to resolve conflicts among rules. Simple general rules are important,
in order to make it feasible for persons to learn and remember the law. It is better
to know the basic rules than to not be able to know any of the rules at all, due to
their overwhelming complexity.

Here is first example of rule in LKIF, a simplified reconstruction of a rule from
the Article Nine World of the Pleadings Game [Gordon, 1995], meaning that all
movable things except money are goods.

<rule id="Sect-9-105h">
<head>
<s pred="goods"><v>c</v> is goods</s>

</head>
<body>
<s pred="movable"><v>c</v> is movable</s>
<not exception="true">

<s pred="money"><v>c</v> is money</s>
</not>

</body>
</rule>

Sect-9-105h is an XML name, which may be used as a term denoting the rule in
other rules.

Legal rules are defeasible generalizations. Showing that some exception applies,
such as the exception for money in the above example, is one way to defeat a rule,
by undercutting [Pollock, 1987] it. A rule applies if its conditions are true, unless

Section 2.3 Compound Formulas 13

some exception applies. A party who wants to apply this rule need not show that
the exception does not apply. The burden of producing evidence that the exception
does apply is on the other party. In the example, the party which wants to prove
that the object is not goods has the burden of proving that the object is money.

Another source of defeasibility is conflicting rules. Two rules conflict if one can
be used to derive P and another ¬P . To resolve these conflicts, we need to be able
to reason (i.e. argue) about which rule has priority. To support reasoning about
rule priorities, the rule language includes a built-in predicate over rules, prior, where

<s pred="prior">
<v>r1</v> has priority over <v>r2</v>

</s>

means that rule r1 has priority over rule r2. If two rules conflict, the argu-
ments constructed using these rules are said to rebut each other, following Pollock
[Pollock, 1987].

The priority relationship on rules is not defined by the system. Rather, priority
is a substantive issue to be reasoned (argued) about just like any other issue. One
way to construct arguments about rule priorities is to apply the argumentation
scheme for arguments from legal rules to meta-level rules, i.e. rules about rules,
using information about properties of rules, such as their legal authority or date
of enactment. The reification of rules and the built-in priority predicate make this
possible. In knowledge bases for particular legal domains, represented using this
rule language, rules can be prioritized both extensionally, by asserting facts about
which rules have priority over which other rules, and intensionally, using meta-rules
about priorities.

For example, assuming metadata about the enactment dates of rules has been
modeled, the legal principle that later rules have priority of earlier rules, lex posterior,
can be represented in LKIF as:

<rule id="lex-posterior">
<head>

<s pred="prior"><v>r1</v> has priority over <v>r2</v></s>
</head>
<body>

<s pred="enacted"><v>r1</v> was enacted on <v>d1</v></s>
<s pred="enacted"><v>r2</v> was enacted on <v>d2</v></s>
<s pred="later"><v>d1</v> is later than <v>d2</v></s>
</body>

</rule>

Rules can be defeated in two other ways: by challenging their validity or by
showing that some exclusionary conditions apply. These are modeled with rules
about validity and exclusion, using two further built-in predicates: valid(rule id) and
excluded(rule id, atom).

The valid and excluded relations, like the prior relation, are to be defined in
domain models. Rules can be used for this purpose. For example, the exception in

14

the previous example about money not being goods, even though money is movable,
could have been represented as an exclusionary rule as follows:

<rule id="Sect-9-105h2">
<head>
<s pred="excluded">

<c>Sect-9-105h</c> is excluded from
<s pred="goods"><v>c</v> is goods</s>

</s>
</head>
<body>
<s pred="money"><v>c</v> is money</s>

</body>
</rule>

To illustrate the use of the validity property of rules, imagine a rule which states
that rules which have been repealed are no longer valid:

<rule id="repealed">
<head>
<not><s pred="valid"><v>r1</v></s></not>

</head>
<body>
<s pred="repealed"><v>r1</v></s>
</body>

</rule>

This example also illustrates the use of negation in the head of a rule.
Further examples of rules, showing how rules are used in the axiomatization of

a legal theory, are provided in Chapter 4.

Chapter 4

Theories

By ‘theory’ we mean here simply a set of propositions. The theory need not be
about anything or be consistent or coherent or have any other desirable properties.

Theories may consist of an infinite number of propositions, so some way is needed
to represent an infinite number of propositions in a finite text. The usual way this
is done in logic is via an axiomatization of the theory. Some finite subset of the
propositions of the theory are chosen as axioms. The theory is completed using a
finite set of inference rules, which can be applied to the axioms and, recursively, the
consequences of these rules, to derive the remaining propositions of the theory.

When axiomatizing theories using classical logic, we say an axiomatization is
correct if and only if all of the axioms and all of the propositions derivable using
the inference rules are members of the theory and complete if every proposition
which is a member of the theory is either an axiom or derivable using the inference
rules. As discussed in Chapter 3, however, LKIF rules model legal rules, whose
conclusions are typically only presumptively true, not necessarily true. Thus a set
of LKIF rules may enable conflicting, contradictory propositions to be derived from
a set of premises. An inconsistent theory has no models, i.e. it describes no possible
set of objects and relations among these objects, in any situation, case or domain.
Thus, the theory represented in LKIF is not intended to be a coherent theory of
some case, but rather a base of raw material for constructing and arguing about,
in dialogues, theories of the case, to find the most coherent ones. This is typically
done by constructing, comparing and evaluating arguments from the rules and other
sources, such as the evidence and precedent cases. The result of this process is a
consistent theory, a set of issues, and proofs showing how each of the issues can be
resolved using arguments constructed from the theory. In summary, legal reasoning
in general is an argumentation process in which theories and proofs are constructed
in dialogs. Legal reasoning cannot be reduced to a mechanical, deductive application
of rules to facts.

Formally, a theory in LKIF has this grammatical form:

Theory = element theory {
attribute id { xsd:ID },
Imports?, Axioms?, Rules?

Imports = element imports { Import+ }

15

16

Axioms = element axioms { Axiom+ }
Rules = element rules { Rule+ }
}

The id of a theory, as usual, provides a way to assign a theory a Universal
Resource Identifier (URI), which can be used to reference the theory on the World
Wide Web.

A theory may optionally import propositions from other XML files on the Web.

Import = element import { attribute uri { xsd:anyURI } }

Syntactically, any resource with a URI can be imported. However, in this report
we semantically constrain the URIs to those which reference XML documents which
are instances of one of the following XML schemas:

• the Resource Description Forma (RDF)

• the Web Ontology Language (OWL), and recursively

• other LKIF files.

In principle, any XML file which can be interpreted as containing a set of propo-
sitions could be imported. Future versions of the LKIF specification may extend
the list of supported document types. One possible candidate for inclusion would
be the Rule Interchange Format (RIF), which is currently being developed by the
World Wide Web Consortium as a standard format for (some subset of) first-order
logic.

As a matter of methodology, we expect OWL to be used to declare the symbols,
i.e. the terminology, to be used for concepts and relations in theories.1 OWL axioms
may be used to provide some constraints on the meanings of these symbols, but
constraints from legislation would normally be represented using LKIF rules, since
LKIF rules has been designed to facilitate the isomorphic modeling of legislation,
easing validation and maintenance.

The syntax for LKIF rules was defined in Chapter 3. The syntax for LKIF axioms
follows:

Axiom = element axiom {
attribute id { xsd:ID },
Wff
}

Essentially, an LKIF axiom simply provides a way to assign an URI to an LKIF
Wff, which represent well-formed formulas of first-order logic. See Chapter 2 for the
specification of the syntax of well-formed formulas, along with examples.

We finish this chapter with an example theory, from the domain of German
family law. Below is the source code in LKIF. Figure 4.1 shows a more readable,
formatted version of the first part of the theory, as it would appear to the author of
the model when using an XML editor which supports Cascaded Style Sheets (CSS).

1To declare a URI is to use it in an OWL axiom, minimally an rdf:type axiom.

Section 2.3 Compound Formulas 17

Figure 4.1: Formatted Version of the Family Law Theory

<lkif
xmlns:family="http:://fokus.fraunhofer.de/elan/estrella/family.owl"
xmlns:rules="http://www.estrellaproject.org/lkif-core/lkif-rules.owl">

<theory id="family-support">
<imports>
<import uri="http://fokus.fraunhofer.de/elan/estrella/family.owl"/>

</imports>

<axioms>

18

<axiom id="f1">
<s pred="family:father">
<c>Tom</c> is the father of <c>Dustin</c>

</s>
</axiom>

<axiom id="f2">
<s pred="family:mother">
<c>Gloria</c> is the mother of <c>Tom</c>

</s>
</axiom>

<axiom id="f3">
<s pred="family:needy"><c>Gloria</c> is needy</s>

</axiom>

<axiom id="f4">
<not>
<s pred="family:hasCapacityToSupport">

<c>Dustin</c> has the capacity to provide support
</s>

</not>
</axiom>

</axioms>

<rules>
<rule id="r1" strict="true">
<head>

<s pred="family:grandparent">
<v>Person1</v> is a grandparent of <v>Person3</v>

</s>
</head>
<body>

<and>
<s pred="family:parent">
<v>Person1</v> is a parent of <v>Person2</v>

</s>
<s pred="family:parent">
<v>Person2</v> is a parent of <v>Person3</v>

</s>
</and>

</body>
</rule>

<rule id="s1601-BGB">
<head>

Section 2.3 Compound Formulas 19

<s pred="family:obligatedToSupport">
<v>Person1</v> is obligated to support
<v>Person2</v>

</s>
</head>
<body>
<s pred="family:directLineage">

<v>Person1</v> is in direct lineage to <v>Person2</v>
</s>

</body>
</rule>

<rule id="s1589a-BGB">
<head>
<s pred="family:directLineage">

<v>Person1</v> is in direct lineage to
<v>Person2</v>

</s>
</head>
<body>

<s pred="family:ancestor">
<v>Person1</v> is an ancestor of <v>Person2</v>

</s>
</body>

</rule>

<rule id="s1589b-BGB">
<head>

<s pred="directLineage">
<v>Person1</v> is in direct lineage to <v>Person2</v>

</s>
</head>
<body>

<s pred="family:descendent">
<v>Person1</v> is a descendent of <v>Person2</v>

</s>
</body>

</rule>

<rule id="s1741-BGB">
<head>

<s pred="family:ancestor">
<v>Person2</v> is an ancestor <v>Person1</v>

</s>
</head>
<body>

20

<s pred="family:adoptedBy">
<v>Person1</v> was adopted by <v>Person2</v>

</s>
</body>

</rule>

<rule id="s1590-BGB">
<head>
<not>

<s pred="family:obligatedToSupport">
<v>Person2</v> is obligated to support <v>Person2</v>

</s>
</not>

</head>
<body>
<s pred="family:relativeOfSpouse">

<v>Person1</v> is a relative of the spouse of <v>Person2</v>
</s>

</body>
</rule>

<rule id="s1602a-BGB">
<head>
<not>

<s pred="family:obligatedToSupport">
<v>Person2</v> is obligated to support <v>Person1</v>

</s>
</not>

</head>
<body>
<not>

<s pred="family:Needy"><v>Person1</v> is needy </s>
</not>

</body>
</rule>

<rule id="s1602b-BGB">
<head>
<s pred="family:Needy"><v>Person1</v> is needy</s>

</head>
<body>
<not>

<s pred="AbleToSupportSelf">
<v>Person1</v> is able to support himself

</s>
</not>

Section 2.3 Compound Formulas 21

</body>
</rule>

<rule id="s1602c-BGB">
<head>

<not>
<s pred="family:Needy"><v>Person1</v> is needy</s>

</not>
</head>
<body>

<s pred="family:AbleToSupportSelf">
<v>Person1</v> is able to support to himself

</s>
</body>

</rule>

<rule id="s1603-BGB">
<head>

<not>
<s pred="family:obligatedToSupport">
<v>Person1</v> is obligated to support <v>Person2</v>

</s>
</not>

</head>
<body>

<not>
<s pred="family:HasCapacityToSupport">
<v>Person1</v> has the capacity to provide support

</s>
</not>

</body>
</rule>

<rule id="s1611a-BGB">
<head>

<s pred="rule:excluded">
<c>s1601-BGB</c> excludes
<s pred="family:obligatedToSupport">
<v>Person2</v> is obligated to support <v>Person1</v>

</s>
</s>

</head>
<body>

<s pred="family:NeedyDueToImmoralBehavior">
<v>Person1</v> is needy due to his
own immoral behavior

22

</s>
</body>

</rule>

<rule id="s91-BSHG">
<head>
<s pred="rule:excluded">

<c>s1601-BGB</c> excludes
<s pred="family:obligatedToSupport">
<v>Person1</v> is obligated to support <v>Person2</v>

</s>
</s>

</head>
<body>
<s pred="family:undueHardship">

<s pred="family:obligatedToSupport">
<v>Person1</v> is obligated to support <v>Person2</v>

</s>
would cause <v>Person1</v> undue hardship

</s>
</body>

</rule>
</rules>

</theory>
</lkif>

Chapter 5

Argument Graphs

Argument graphs, also called ‘inference graphs’, are a generalization of ‘and/or’
graphs useful for representing proofs and providing a basis for generating expla-
nations. Diagramming or ‘visualizing’ argument graphs is a common method for
helping people to understand complex chains of reasoning or arguments.

Figure 5.1 shows an example argument graph, from [Gordon et al., 2007], using
a diagramming method developed in [Gordon, 2007b].

a1

There is a contract.

a2

a3

The agreement

is in writing.

a4

There is

 an agreement.

a5

The agreement is for

 the sale of real estate.

One of the parties

 is a minor.

The agreement

 was by email.
There is a deed.

Figure 5.1: Argument Graph

The LKIF model of argument graphs is based on the conceptual model of the
Argument Interchange Format [Carlos Ches et al., 2006], which was developed in
the European ASPIC project 1 We stress that the Argument Interchange Format
(AIF) is a conceptual model because, despite its name, it is not and interchange
format and does not have a normative concrete syntax.2

LKIF instantiates the abstract AIF model of argument graphs in a way which al-
lows the acceptability of a proposition, given a set of assumptions and an assignment
of a proof standard to each proposition, to be computed [Gordon et al., 2007].

1ASPIC (IST-002307) was an Integrated Project of the European Unions 6th Framework.
2Three concrete syntaxes for AIF are presented in [Carlos Ches et al., 2006] for the sake of

illustration.

23

24

Let us present the grammar of LKIF argument graphs top-down, beginning with
the argument-graph element.

ArgumentGraph = element argument-graph {
attribute id { xsd:ID }?,
attribute title { xsd:string }?,
attribute main-issue { xsd:anyURI }?,
Statements, Arguments

}
Statements = element statements { Statement+ }
Arguments = element arguments { Argument* }

As with all top-level LKIF elements, an argument-graph has an id attribute,
allowing it to be assigned an URI. The title attribute is a string for providing a
longer, more descriptive label for the graph. The main-issue attribute is a URI
pointing to the statement of the argument graph which is of primary interest in a
case.

The content model of an argument-graph consists of one or more statement ele-
ments followed by zero or more argument elements. The grammar of the statement
element is defined as follows:

Statement = element statement {
attribute id { xsd:ID },
attribute value { "unknown" | "true" | "false" }?,
attribute assumption { xsd:boolean }?,
attribute standard { "SE" | "DV" | "BA" | "PE" | "BRD" | "CCE" }?,
Atom

}

Statements serve two purposes: 1) they provide a way to assign a URI to an
atomic formula, i.e. an LKIF atom, and 2) they provide a place to store additional
information about the status of each atom of the argument graph in a stage of a
dialogue:

value. The value attribute expresses whether the atomic proposition true, false
or at issue (‘unknown’) in the case. Argument graphs do not depend on or
use a three-valued logic. The underlying logic is classical two-valued logic.
Each proposition is either true or false. The value assigned to an atomic
proposition in a statement expresses meta-level, epistemological information
about whether or not the truth value of the proposition is known in the case
and , if so, which truth value applies. The default value of the value attribute
is unknown.

assumption. The assumption attribute is used to express whether the value at-
tribute has been only assumed, temporarily or hypothetically, or whether a
final decision has been taken to accept the value as a fact of the case. The
default value of the assumption attribute is false. Taken together, the value
and assumption attributes provide four different states:

Section 2.3 Compound Formulas 25

value=unknown, assumption=true. By convention, we take this mean
that the proposition has been stated in the dialogue, but not questioned.

value=unknown, assumption=false. This means the truth of the propo-
sition has been questioned by a party in the dialogue.

value=true, assumption=true. The proposition is assumed to be true.

value=true, assumption=false. A decision has been taken to accept the
statement as true.

value=false, assumption=true. The proposition is assumed to be false.

value=false, assumption=false. A decision has been taken that the state-
ment is false, i.e. to accept the negation of the statement as being true.

standard. The standard attribute provides a way to assign a proof standard to each
proposition in he dialogue. This is a very general mechanism, as it allows a
different proof standard to be assigned to each proposition. The proof standard
must be selected from the following set:

SE. Scintilla of the evidence.

PE. Preponderance of the evidence.

CCE. Clear and convincing evidence.

BRD. Beyond reasonable doubt.

DV. Dialectical validity

BA. Best argument.

The first four proof standards are well known legal proof standards, suitable for
issues of fact. The dialectical validity and best argument proof standards are suitable
for legal issues. The default proof standard is ‘best argument’, BA. All of these proof
standards are supported the reference inference engine.

The purpose of a proof standard is to provide a systematic way to aggregate
conflicting pro and con arguments. There is no consensus in the computational
models of argument community about how to aggregate arguments or model proof
standards. Indeed, the precise meaning of the legal proof standards is an open
issue of legal theory [Anderson et al., 2005]. A formal model of the scintialla of
the evidence, dialectical validity and best argument standards compatible with LKIF
argument graphs has been proposed [Gordon et al., 2007]. Formal models of the
preponderance of the evidence, clear and convincing evidence and beyond reasonable
doubt legal proof standards for LKIF are under development. There is no doubt
that these are important legal proof standards, even if there is disagreement about
how to model them computationally. For this reason, LKIF provides syntax for
assigning these legal proof standards to propositions, even though a precise formal
model of their meaning is still lacking.

Finally, we now turn to the LKIF grammar for arguments. A set of arguments
links up the statements, using their URIs, into a graph.

Argument = element argument {

26

attribute id { xsd:ID },
attribute title { xsd:string }?,
attribute direction { "pro" | "con" }?,
attribute scheme { xsd:anyURI | xsd:string }?,
attribute weight { xsd:float }?,
Conclusion, Premises

}

Premises = element premises { Premise* }
Conclusion = element conclusion { attribute statement { xsd:anyURI } }

Premise = element premise {
attribute polarity { "positive" | "negative" }?,
attribute exception { xsd:boolean }?,
attribute role { xsd:anyURI | xsd:string }?,
attribute statement { xsd:anyURI }

}

An argument links a sequence of zero or more premise elements to exactly one
conclusion element. Each argument can be assigned a URI as its id. The title
attribute provides a way to label an argument with a descriptive name. This is useful,
for example, for defining a set of argumentation schemes, where each argument is
intended to serve as a template for other arguments. The direction attribute is
for stating whether the argument is pro or con its conclusion. Arguments are pro
arguments by default, if this attribute is left unspecified. The scheme attribute
provides a place to reference the argument which was used as a template. The value
of the scheme argument may be either a URI or a string. This allows the common
name of the scheme to be provided if, for example, the scheme has not been modeled
formally in LKIF. The weight attribute of an argument is a real number in the range
of 0.0 to 1.0. The default weight of an argument is 0.5. Weights are not relevant for
the scintilla of evidence, dialectical validity or best argument standards. Whether
or not weights are useful in computational models of the preponderance of evidence,
clear and convincing evidence or beyond reasonable doubt proof standards is an open
research question. LKIF provides a way to assign weights to arguments so as to be
suitable for use in computational models of proof standards which use weights.

A semantic constraint on argument graphs, not expressible in the grammar,
is that they may not contain cycles. This restriction is reasonable, since argument
graphs model proofs and cyclic arguments are not persuasive. Moreover we are aware
of no application scenarios requiring support for cyclic arguments. Syntactically,
LKIF is capable of supporting cyclic arguments, since the grammar does not and
cannot forbid them.

Another semantic constraint is that the statement attributes of the premise and
conclusion elements should reference a statement element defined in the same argu-
ment graph containing this argument.

Premises also provide several attributes. The polarity attribute provide a way
to negate a premise. Recall that all statements in an argument graph are atomic

Section 2.3 Compound Formulas 27

propositions, i.e. positive literals. That is, no statement in the argument graph is
negative. Negation is modeled in two ways, depending on whether the premise or the
conclusion of the argument is to be negated. Premises are negated by assigning the
premise a negative polarity. (By default, the polarity is positive.) A negated premise
holds only if its statement is not acceptable. Conclusions are negated by using con
arguments. An argument con a proposition P is equivalent to an argument pro the
proposition ¬P and vice versa. The exception attribute of premise is for allocating
the burden of proof for the premise to the party interested in undercutting the
argument. An exceptional premise is assumed to hold unless the negation of the
statement of the premise is acceptable. The role attribute of a premise element
provide a way to annotate the premise with its role in the argumentation scheme
applied to construct the argument. For example, if Toulmin’s famous scheme is used
[Toulmin, 1958], the role might be ‘data’, ‘warrant’ or perhaps ‘backing’. Finally,
as already suggested, the statement attribute is used to reference the propositional
content of the premise, using the URI assigned the atomic proposition by a statement
element of the argument graph.

Finally, let us close this chapter with an example, an LKIF version of the argu-
ment graph shown in Figure 5.1 at the beginning of this chapter.

<lkif>
<argument-graphs>

<argument-graph>
<statements>

<statement id="contract" value="unknown" assumption="true">
<s>There is a contract</s>

</statement>
<statement id="writing" value="unknown" assumption="true">
<s>The agreement is in writing.</s>

</statement>
<statement id="real-estate" value="unknown" assumption="true">
<s>The agreement is for the sale of real estate.</s>

</statement>
<statement id="agreement" value="unknown" assumption="true">
<s>There is an agreement.</s>

</statement>
<statement id="minor" value="unknown" assumption="true">
<s>One of the parties is a minor.</s>

</statement>
<statement id="email" value="unknown" assumption="true">
<s>The agreement was by email.</s>

</statement>
<statement id="deed" value="true" assumption="true">
<s assumable="true">There is a deed.</s>

</statement>
</statements>

28

<arguments>
<argument id="a1" direction="pro">
<conclusion statement="contract"/>
<premises>

<premise statement="agreement"/>
<premise exception="true" statement="minor"/>

</premises>
</argument>

<argument id="a2" direction="con">
<conclusion statement="contract"/>
<premises>

<premise polarity="negative" statement="writing"/>
<premise statement="real-estate"/>

</premises>
</argument>

<argument id="a3" direction="con">
<conclusion statement="writing"/>
<premises>

<premise statement="email"/>
</premises>

</argument>

<argument id="a4" direction="pro">
<conclusion statement="agreement"/>
<premises>

<premise statement="deed"/>
</premises>

</argument>

<argument id="a5" direction="pro">
<conclusion statement="real-estate"/>
<premises>

<premise statement="deed"/>
</premises>

</argument>
</arguments>

</argument-graph>
</argument-graphs>

</lkif>

Chapter 6

Sources

LKIF provides a mechanism, using URIs, for associating each of the major elements
of an LKIF model (theories, axioms, rules, statements, arguments, and argument
graphs) with one or more XML resources on the World Wide Web. This feature
is needed to enable elements of an LKIF model of legislation to be linked to XML
representations of the legal source texts, or parts of these texts, in particular legal
sources marked up using the MetaLex XML schema developed in Work Package 3
of the ESTRELLA project, and delivered as Report D3.1, the companion report of
this deliverable defining LKIF.

The mechanism is very simple but also very powerful and general. At the begin-
ning of an LKIF document, an optional sources element may be included, consisting
of one or more source elements. The formal grammar of these elements follows:

Sources = element sources { Source+ }

Source = element source {
attribute element { xsd:anyURI },
attribute uri { xsd:anyURI }

}

Each source element consists of a pair of element and uri attributes, both of
which have URI values. The element attribute should point to an element of the
LKIF model in the same file as the source element. The uri attribute should point
to the element in an external file containing a legal source text interpreted by the
element of the LKIF model.

29

Acknowledgements

The work reported in this report was conducted as part of the European ESTRELLA
project (IST-2004-027655). The content of this report is the result of work done by
many members of the ESTRELLA consortium, not just the author of this report. In
particular I would like the acknowledge the contributions of, in alphabetical order,
Trevor Bench-Capon, Stephan Breidenbach, Marcello di Bello, Kasper van den Berg,
Matthew Bickham, Alexander Boer, Joost Breuker, Giuseppe Contissa, Tom van
Engers, Andras Forhecz, Paul Hancock, Steffen Heitkam, Szymon Klarman, Rinke
Hoekstra, Ulrike Liss, Andras Millinghofer, Monica Palmirani, Samir Sekkat, Reka
Vas, Radboud Winkels, and Adam Wyner.

30

Appendix A

Acronyms

CSS. Cascaded Style Sheet

LKIF. Legal Knowledge Interchange Format

OWL. Web Ontology Language

Relax NG. Regular Language for XML Next Generation

RDF. Resource Description Format

RIF. Rule Interchange Language

RuleML. Rule Markup Language

SWRL. Semantic Web Rule Language

URI. Universal Resource Identifier

XML. Extensible Markup Language

XSD. XML Schema Definition

XSLT. Extensible Stylesheet Language Transformations

31

Appendix B

LKIF Schema

Copyright (C) 2008 Thomas F. Gordon, Fraunhofer FOKUS, Berlin
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 3 (LGPL-3)
as published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for details.
#
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Version: 2.0.4

datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

grammar {
start = element lkif {

attribute version { xsd:string }?, # version of the LKIF schema
Sources?, Theory?, ArgumentGraphs?

}

Sources = element sources { Source+ }

Source = element source { attribute element { xsd:anyURI },
attribute uri { xsd:anyURI } }

Theory = element theory {
attribute id { xsd:ID },
Imports?, Axioms?, Rules?

}

32

Section 2.3 Compound Formulas 33

Imports = element imports { Import+ }
Axioms = element axioms { Axiom+ }
Rules = element rules { Rule+ }

Import = element import { attribute uri { xsd:anyURI } }

Axiom = element axiom {
attribute id { xsd:ID },
Wff

}

ArgumentGraphs = element argument-graphs { ArgumentGraph+ }

Rule = element rule {
attribute id { xsd:ID },
attribute strict { xsd:boolean }?, # default: false
Head, Body?

}

Head = element head { Wff+ }
Body = element body { Wff+ }

Atom = element s {
attribute pred { xsd:anyURI | xsd:Name }?,
attribute assumable { xsd:boolean}?, # default: false
((text | Term)*)

}

Wff = Atom | Or | And | Not | If | Iff | All | Exists
Or = element or { attribute assumable { xsd:boolean }?, #default: false

Wff, Wff+ }
And = element and { attribute assumable { xsd:boolean }?, #default: false

Wff, Wff+ }
Not = element not {

attribute exception { xsd:boolean }?, # default: false
attribute assumable { xsd:boolean }?, # default: false
Wff

}

If = element if {
attribute assumable { xsd:boolean }?, #default: false
Wff, Wff

}

Iff = element iff {
attribute assumable { xsd:boolean }?, #default: false

34

Wff, Wff
}

All = element all {
attribute assumable { xsd:boolean }?, #default: false
Variable+, Wff

}

Exists = element exists {
attribute assumable { xsd:boolean }?, #default: false,
Variable+, Wff

}

Term = Variable | Individual | Constant | Expression | Atom

Variable = element v { xsd:Name }

Individual = element i {
attribute value { xsd:anyURI },
text

}

Constant = element c {
attribute value { xsd:anySimpleType }
xsd:Name | xsd:anyURI | xsd:string | xsd:boolean | xsd:integer | xsd:float

}

Expression = element expr {
attribute functor { xsd:anyURI },
Term*

}

ArgumentGraph = element argument-graph {
attribute id { xsd:ID }?,
attribute title { xsd:string }?,
attribute main-issue { xsd:anyURI }?,
Statements, Arguments

}

Statements = element statements { Statement+ }

Statement = element statement {
attribute id { xsd:ID },
attribute value { "unknown" | "true" | "false" }, # default: unknown
attribute assumption { xsd:boolean }?, # default: false
attribute standard { "SE" | "DV" | "BA" | "PE" | "BRD" | "CCE" }?, # default: BA

Section 2.3 Compound Formulas 35

Atom
}

Arguments = element arguments { Argument* }
Argument = element argument {
attribute id { xsd:ID },
attribute title { xsd:string }?,

attribute direction { "pro" | "con" }?,
attribute scheme { xsd:anyURI | xsd:string }?,
attribute weight { xsd:float }?, # range: 0.0 bis 1.0; default: 0.5
Conclusion, Premises

}

Premises = element premises { Premise* }

Premise = element premise {
attribute polarity { "positive" | "negative" }?, # default: positive
attribute exception { xsd:boolean }?, # default: false, i.e. ordinary premise
attribute role { xsd:anyURI | xsd:string }?,
attribute statement { xsd:anyURI }

}

Conclusion = element conclusion { attribute statement { xsd:anyURI } }
}

Bibliography

[Anderson et al., 2005] Anderson, T., Schum, D., and Twining, W. (2005). Analysis
of Evidence. Cambridge University Press, 2nd edition.

[Bench-Capon and Coenen, 1992] Bench-Capon, T. and Coenen, F. P. (1992). Iso-
morphism and legal knowledge based systems. Artificial Intelligence and Law,
1(1):65–86.

[Carlos Ches et al., 2006] Carlos Ches n., McGinnis, J., Modgil, S., Rahwan, I.,
Reed, C., Simari, G., South, M., Vreeswijk, G., and Willmott, S. (2006). Towards
an argument interchange format. Knowledge Engineering Review, 21(4):293–316.

[Clark, 2003] Clark, J. (2003). Relax ng. http://relaxng.org.

[Clocksin and Mellish, 1981] Clocksin, W. F. and Mellish, C. S. (1981). Program-
ming in Prolog. Springer-Verlag.

[Gordon, 1995] Gordon, T. F. (1995). The Pleadings Game; An Artificial Intelli-
gence Model of Procedural Justice. Springer, New York. Book version of 1993
Ph.D. Thesis; University of Darmstadt.

[Gordon, 2007a] Gordon, T. F. (2007a). Constructing arguments with a computa-
tional model of an argumentation scheme for legal rules. In Proceedings of the
Eleventh International Conference on Artificial Intelligence and Law, pages 117–
121.

[Gordon, 2007b] Gordon, T. F. (2007b). Visualizing Carneades argument graphs.
Law, Probability and Risk, 6(1-4):109–117.

[Gordon et al., 2007] Gordon, T. F., Prakken, H., and Walton, D. (2007). The
Carneades model of argument and burden of proof. Artificial Intelligence, 171(10-
11):875–896.

[Kowalski and Sergot, 1986] Kowalski, R. and Sergot, M. (1986). A logic-based cal-
culus of events. New Generation Computing, 4:67–95.

[Loui, 1998] Loui, R. P. (1998). Process and policy: resource-bounded non-
demonstrative reasoning. Computational Intelligence, 14:1–38.

[Pollock, 1987] Pollock, J. (1987). Defeasible reasoning. Cognitive Science,
11(4):481–518.

36

http://relaxng.org

BIBLIOGRAPHY 37

[Toulmin, 1958] Toulmin, S. E. (1958). The Uses of Argument. Cambridge Univer-
sity Press, Cambridge, UK.

[Walton, 2006] Walton, D. (2006). Fundamentals of Critical Argumentation. Cam-
bridge University Press, Cambridge, UK.

38 BIBLIOGRAPHY

	Overview
	Formulas
	Terms
	Atomic Formulas
	Compound Formulas

	Rules
	Theories
	Argument Graphs
	Sources
	Acronyms
	LKIF Schema

