Hybrid Reasoning with Argumentation Schemes

Thomas F. Gordon!

Abstract. Practical reasoning typically requires a variety
of argumentation schemes to be used together to solve prob-
lems and make decisions. For example, a legal case may raise
issues requiring argument from precedent cases, rules, policy
goals, moral principles, jurisprudential doctrine, social values
and evidence. We present an extensible software architecture
which allows diverse computational models of argumentation
schemes to be used together in an integrated way to con-
struct and search for arguments. The architecture has been
implemented in Carneades, a software library for building ar-
gumentation tools. The architecture is illustrated with models
of schemes for argument from ontologies, rules, cases and tes-
timonial evidence and compared to blackboard systems for
hybrid reasoning.

1 Introduction

We present an extensible software architecture which allows
diverse computational models of argumentation schemes to
be used together in an integrated way to construct and search
for arguments. To make this paper self-contained, we begin by
summarizing the concept of argument in philosophy [35], and
our computational model of argument in Carneades [15].2

An argument links a set of statements, the premises, to
another statement, the conclusion. The premises may be la-
belled with additional information, about their role in the
argument. Aristotle’s theory of syllogism, for example, distin-
guished major premises from minor premises. The basic idea
is that the premises provide some kind of support for the con-
clusion. If the premises are accepted, then the argument, if it
is a good one, lends some weight to the conclusion. Unlike in-
stances of valid inference rules of classical logic, the conclusion
of an argument need not be necessarily true if the premises
are true. Moreover, some of the premises of an argument may
be implicit. An argument with implicit premises is called an
enthymeme [35, p. 178].

Arguments have been modeled in various ways computa-
tionally: abstractly, with no structure [11], as sets of assumed
propositions [29, 14, 6], and as proofs or derivations in some
logical calculus [23]. We prefer to model arguments in a way
which is closer to concept of an argument in philosophy, as
tuples of the type (list[premise], statement) where list[premise]
denotes the type of a list of premises, and the statement is the
conclusion of the argument. A premise is either a statement,
exception or assumption. A statement is some representation

of a proposition. We assume a complement function of type
statement = statement such that complement(p) denotes the
proposition which is the logical negation of the proposition
denoted by p and complement (complement(p)) equals p. Ex-
ceptions and assumptions are denoted unless p and assuming
p, respectively, where p is a statement, and represent the crit-
ical questions which may be asked to undercut an argument
[15]. An argument (P,c) is denoted c since [p1, ..., pn].?

Let al be the argument q since P and let r = complement(q).
We say al is an argument pro q and con r. Note that al is not
a con argument for every proposition inconsistent with q since
checking consistency is either undecidable, in the case of first-
order logic, or at least intractable, in the case of propositional
logic. We assume there is a simple syntactic test of checking
whether r = complement(q).

To give an example, the classic argument about Socrates
being mortal can be denoted as mortal(Socrates) since
man(Socrates). This is an example of an ethymeme, since the
major premise, V x . man(x) — mortal(x), is implicit.

Argumentation is the process of putting forth arguments
to determine the acceptability of propositions. Argumenta-
tion processes are typically dialogs involving two or more
agents, but may also be monological. Procedural norms, called
argumentation protocols, regulate the process, to help pro-
mote values such as rationality, fairness, efficiency and trans-
parency. Which protocol is appropriate depends on the type
of the process and its goals. At a very high level of abstrac-
tion, an argumentation process can be viewed as a sequence
of stages, where each stage consists of the set of arguments
which have been put forward thus far in the process, along
with other information, such as a record of claims or commit-
ments [19].

At each stage of the argumentation process, an effective
method (decision procedure) is needed for testing whether
some proposition at issue is presumably true given the argu-
ments of the stage and a set of assumptions. The assump-
tions could represent undisputed facts, the current consensus
of the participants, or the commitments or beliefs of some
agent, depending on the task. This determination may depend
on the proof standard applicable to the proposition at issue,
given the dialogue type and its protocol. What is needed, sim-
plifying somewhat, is a decidable function, let us call it ac-
ceptable, of the type (arguments: set[argument], assumptions:
set[statement], issue: statement) = Boolean. An acceptability
function of this type is provided by the Carneades model of

1 Fraunhofer FOKUS, Berlin,

thomas.gordon@fokus.fraunhofer.de
2 The Carneades system is open source software available at http:
//carneades.berlios.de.

Germany, email:

3 The notation used in this article for logic and mathematics is
intended to make formulas more pleasant to read using long,
mnemonic identifiers. This article contains no programming lan-
guage code.

http://carneades.berlios.de
http://carneades.berlios.de

argument [15].

Carneades’ “relational core”, stripped of its support for
multiple proof standards and allocating various kinds of bur-
den of proof, was shown by Prakken in [15] to be very similar
to the ambiguity-blocking variant of Defeasible Logic (DL)
[22]. Governatori [16] investigated the relationship between
DL and Dung’s abstract argumentation framework [11]. He
proved that the ambiguity-propagating variant of DL instan-
tiates Dung’s grounded semantics, for a version of DL with-
out strict rules. He also proved this result for the ambiguity-
blocking variant of DL, but to obtain this result he had to
change Dung’s notion of acceptability of an argument with
respect to a set of arguments. Prakken conjectures that, be-
cause of its ambiguity-blocking character, the relational core
of Carneades cannot be proven to instantiate any of the four
semantics of Dung’s abstract argumentation framework with-
out changing Dung’s notion of acceptability.

At each stage of an argumentation process, a common task
will be to try to find or construct additional arguments which
can be put forward to make an acceptable statement unac-
ceptable, or vice versa. Whereas the problem of checking the
acceptability of a statement given a finite set of arguments is
decidable, the problem of finding or constructing arguments is
in general ill-defined, open and undecidable. While models of
sources of arguments can be constructed, for example a rule-
base representing knowledge about some domain, and these
models can be used to generate arguments, it is not usually
possible, as a practical matter, to model all relevant sources
of arguments. Moreover, models are always abstractions and
thus subject to critical questions about their adequacy for the
task at hand. Despite these limitations, models are essential
for constructing arguments. Since models are abstractions de-
veloped for particular purposes and provide only specialized
views onto reality, several models may be relevant and useful
for an argumentation process, depending on the issues.

For example, a legal case may raise issues requiring argu-
ment from precedent cases, rules, policy goals, moral prin-
ciples, jurisprudential doctrine, social values and evidence.
Argumentation tools are needed for helping people to argue
their cases effectively in court and administrative proceed-
ings. Tools for reconstructing, visualizing and evaluating ar-
guments, while important, are not sufficient in this context.
A party to a legal or administrative proceeding is not in the
role of an analyst trying to understand a previous dialogue,
but rather in the role of an advocate needing to construct and
put forward effective arguments as the dialogue unfolds.

How can arguments constructed from multiple, hybrid mod-
els be integrated, aggregated and evaluated? Our thesis is that
argumentation schemes enable the methods used to contruct
arguments to be separated and abstracted from the form and
content of arguments. Argumentation frameworks [11, 15] for
aggregating and evaluating arguments depend only on rela-
tionships between arguments, not the methods used to con-
struct them. This separation makes it possible to use a variety
of hybrid methods to construct arguments but to aggregate
and evaluate these hybrid arguments using a common argu-
mentation framework. Each argumentation scheme, in its role
as a method, implements a common protocol for mapping an
issue and a model of some information or knowledge to a
set of arguments about the issue. A set of such argumenta-
tion schemes induces a search space over sets of arguments.

Heuristic methods can be used together with an argumenta-
tion framework, such as Carneades, to search this space for
sets of arguments in which some goal statement or argument
is acceptable.

The rest of this article is organized as follows. The next
section introduces the concept of argumentation schemes from
philosophy and presents our computational model of schemes
as implementations of an abstract protocol for constructing
arguments from models. The following sections illustrate this
idea with outlines of computational models of schemes for
argument from ontologies, rules, cases and witness testimony,
respectively. A section on related work compares our work
with other architectures for hybrid reasoning, in particular
blackboard systems. The article concludes by reiterating the
main results and suggesting ideas for future work.

2 Argumentation Schemes

An argumentation scheme is a pattern which can be used both
to create arguments, by instantiating the pattern, and to clas-
sify arguments, by matching a given argument to the pattern.
For example, here is a version of the scheme for argument from
position to know [35, p. 85].

Argument from Position to Know

Position to Know Premise. Person p is in a position to
know whether the statement s is true of false.

Assertion Premise. p asserts that s is true (false).

Conclusion. s is true (false).

Just as ‘argument’ can mean both an argumentation pro-
cess and a relationship between a set of premises and a con-
clusion, so too can argumentation schemes be viewed from
two perspectives, as tools for 1) argument reconstruction and
classification, and 2) argument construction or generation.

The classification function of argumentation schemes plays
an important role during the process of reconstructing ar-
guments from natural language texts, for example to help
identify implicit premises. Argument reconstruction can be
viewed as an application of abductive reasoning. Argumenta-
tion schemes are used as patterns to construct a set of alter-
native interpretations of the text, where each interpretation
is an argument instantiating some scheme. These interpreta-
tions form the set of hypotheses for abductive reasoning. The
task is then to choose the interpretation among the hypothe-
ses which best explains the text and other evidence. Once the
argument has been reconstructed, the scheme can also be used
to help identify missing premises needed to evaluate the argu-
ment. For example, the scheme for argument from position to
know could be used to help interpret the text “Markley lives
in California and tells me the weather is beautiful there.” as
an argument for the proposition that the weather is good in
California since Markley has asserted this and is in a position
to know this. One kind of computational model suitable for
supporting this classification task would be a formal ontol-
ogy of argumentation schemes, represented in some version
of description logic [4], such as the Web Ontology Language
[21]. Rawhan and Banihashemi have developed a model of
argumentation schemes of this type [27].

The other way to look at argumentation schemes is as tools
for constructing or inventing new arguments to put forward in

dialogues. For example, if the quality of the weather in Califor-
nia is at issue, one could apply the scheme for argument from
position to know by interviewing people who live in California
about the weather there. From this perspective, argumenta-
tion schemes are methods for constructing arguments. The
two perspectives are complementary. The result of applying
a scheme qua method is an argument which is an instance of
the scheme qua pattern. When necessary to distinguish these
two meanings, we use the terms “argument generator” and
“argument patterns” for the method and template senses of
argumentation schemes, respectively.

The focus in this article is on computational models of ar-
gumentation schemes in the sense of argument generators. To
allow models of diverse argumentation schemes to be used
together, we first develop a protocol for argument genera-
tors and require every argument generator to implement this
protocol. Intuitively, the job of an argument generator is to
construct a sequence of arguments which may be useful for
proving or disproving a goal statement. A set of argument
generators induces a search space. Each argument produced
by an argument generator can be used to construct a succes-
sor state in the space. The space can be searched heuristically
for states in which the statement at issue is either acceptable
or not, depending on whether the goal is to prove or disprove
the statement.

More formally, an argument generator is a function of the
type (arguments: set[argument], assumptions: set[statement],
issue: statement) = stream[argument], where the type
stream[argument] denotes a possibly infinite sequence of ar-
guments.4

3 Argument from Ontology

In computer science, an ontology is a representation of con-
cepts and relations among concepts, typically expressed in
some decidable subset of first-order logic, such as description
logic [4]. Such ontologies play an important role in integrating
systems, by providing a formal mechanism for sharing termi-
nology, and also in the context of the so-called Semantic Web
[5] for providing machine-processable meta-data about web
resources and services. There is a World Wide Web standard
for modeling ontologies, based on description logic, called the
Web Ontology Langauge (OWL) [21]. In this section, we out-
line one way to construct arguments from ontologies modeled
using the Description Logic Programming (DLP) subset of
description logic [17].

Suppose we have the following simple DLP ontology, rep-
resented using standard description logic syntax:

Man = Human N Male
Woman = Human N Female
mother C parent

parent C ancestor

4 The signature of argument generators in Carneades is actually
a bit more complicated than this, since some heuristic control
information is passed to the generator and a set of substitutions,
mapping logical variables to terms, is returned along with each
argument in the resulting stream of arguments. To keep things
simpler, for expository purposes, we assume in this paper that
statements are represented as ground formulas in first-order pred-
icate calculus, i.e. formulas which do not contain variables, but
only constants.

This defines the concept, Man to be equivalent to male hu-
mans. Woman are defined analogously. The mother role, is
subrole of parent, which in turn is a subrole of ancestor. De-
scription logic concepts and roles would be represented as
unary and binary predicates, respectively, in predicate logic.

Assuming statements in arguments are represented using
first-order logic, as is the case in Carneades, a scheme for
argument from ontologies within the DLP subet of descrip-
tion logic can be implemented using the DLP translation be-
tween description logic and the Horn clause subset of first-
order predicate calculus.

To implement this argumentation scheme, satisfy-
ing the protocol, we need a function, let us call it
argument-from-ontology, of type ontology = (arguments:
set[argument], assumptions: set[statement], issue: statement)
= stream[argument]. Suppose we want to find arguments
about whether or not one of Max’s ancestors is Gertrude.
Let p be a predicate calculus formula representing this goal
statement, ancestor(Max,Gertrude). Let family-relations be
the ontology defined above. Let family-relations-scheme be
argument-from-ontology(family-relations). Let G be a set of
arguments and A an empty set of assumptions. Then the
value of family-relations-scheme(G,A,p) is the following finite
stream of arguments:

stream(ancestor(Max,Gertrude) since [parent(Max,Gertrude)])

The protocol does not require argumentation schemes
to return only arguments which would make the state-
ment at issue acceptable or unacceptable, when added to
the prior arguments, G in the example above. If accept-
able(G,A, parent(Max,Gertrude) is not true, the heuristic search
procedure can apply other argumentation schemes to try
to find further arguments for parent(Max,Gertrude), in a
backwards-chaining, goal-directed way, which together with
the previous arguments do make the goal statement accept-
able.

‘We do not have space to show how to implement this ar-
gumentation scheme in detail, but it is not difficult, at least
not for the DLP subset of description logic. Some systematic
way for mapping predicate symbols to the names of concepts
and properties in ontologies is required. OWL provides a way
to achieve this, using Universal Resource Identifiers (URIs).
This is an example of the kind of integration problem for
which OWL was developed to solve.

One issue is whether or not arguments from ontologies
should be defeasible, since ontologies are typically defined us-
ing some subset of first-order logic, which is of course mono-
tonic. One might claim that all communication presumes a
shared ontology which is not subject to debate. Following
Walton, our view is that arguments from ontology are de-
feasible, in the same way that arguments from theory are
defeasible. Even if one accepts that a community in principal
shares some ontology, this does imply that a model of this
ontology in some representation language, such as OWL, is
adequate or beyond dispute. And even if there has been an
explicit agreement within a community to accept an ontology
as a standard, or some institional authority has declared the
ontology to be binding, arguments from such agreements and
authority are also defeasible and subject to critical questions.

Walton has defined a scheme for argument from verbal clas-
sification [35, p. 128-132] which can be viewed as a kind of

argument from ontology.

Argument from Verbal Classification

Individual Premise. a has property f.

Classification Premise. For all x, if x has property f, then
x can be classified as having property g.

Conclusion. a has property g.

Arguments from verbal classification are defeasible. Walton
defines a couple of critical questions for this scheme, including
“Is the verbal classification in the classification premise based
merely on a stipulative or biased definition that is subject to
doubt?”. One can imagine other critical questions. Our aim
here is only to provide evidence for the claim that arguments
from ontology are defeasible, not to explicate these critical
questions.

Critical questions can be included in the arguments re-
turned by an argumentation scheme using exceptions and as-
sumptions. For example, the bias critical question should be
modeled as an exception if the burden of producing arguments
pro bias should be on the party challenging the argument from
ontology, rather than requiring the party who made the argu-
ment from ontology to produce arguments showing the lack
of bias on the part of the developers of the ontology. Whether
a critical question should be an exception or assumption is a
policy issue that needs to be addressed by the developers of
the argumentation scheme.

To include the bias critical question in the arguments re-
turned by the scheme, the ontology needs to be reified by
assigning it an identifier. Indeed every OWL ontology has a
URI which can be used to reference it. Let ol be the URI of
the example above and biased be a unary predicate, possibly
defined in some other ontology. Then the bias critical question
can be included in the arguments returned in response to the
example query above as follows:

stream(human(Joe) since [man(Joe), unless biased(o1)],
human(Joe) since [woman(Joe), unless biased(o1)])

As a practical matter, including such critical questions can
vastly increase the size of the search space for arguments.
Indeed, we conjecture that one reason ordinary premises and
critical questions are distinguished in argumentation schemes
is as a heuristic for reducing the size of the search space. Thus,
the control component of a search engine for arguments should
provide some way for users to control which kinds of critical
questions are asked, perhaps on an issue-by-issue basis.

One more point: Implementing an argumentation scheme
for a more expressive description logic than DLP is surely a
difficult task. Description logic theorem provers are complex
technology and, to our knowledge, typically do not produce
proof trees which could be used to extract arguments. The de-
velopers of the DLP subset of description logic claim that it is
expressive enough for most purposes. But whether or not one
agrees with this assessment, from an argumentation perspec-
tive this is just an example of the necessary practical limits
of all models for generating arguments. Models are abstrac-
tions which leave out information which could be relevant for
resolving some issue. A DLP version of a richer ontology is an
example of a model which abstracts away some information
for practical reasons.

4 Argument from Rules

There are many kinds of rules. The common sense, dictionary
meaning of rule is “One of a set of explicit or understood reg-
ulations or principals governing conduct within a particular
sphere of activity.” [1]. In classical logic, rules can be inference
rules or material implications. In computer science, rules can
be production rules, grammar rules, or rewrite rules. When
we use the term ‘rule’ in this section, unless otherwise stated,
we mean rule in the regulatory sense.

Rules express not only regulations about how to act, but
also regulate how to argue or reason when planning actions or
determining whether or not some action or state complies with
the rules. For example, the criminal law rule against murder,
defined as the “unlawful killing of a human being with mal-
ice aforethought”, expresses not only a general policy against
such killings, but also a policy to presume that a murder has
taken place given proof that a human being was intention-
ally killed. There are exceptions, such as self defense, but the
rules are formulated so as to deter killings by increasing the
probability that persons will presume that some contemplated
killing would be illegal.

Since argumentation schemes also express reasoning norms
and conventions of a community, argumentation schemes and
rules appear to have much in common. Recall that argumen-
tation schemes can be viewed from two perspectives, as ar-
gument patterns and as argument generators. Rules represent
argument patterns in a way which enables them to be used to
generate arguments. Other representations of argument pat-
terns may be better suited to the task of reconstructing ar-
guments from natural language texts.

In the field of artificial intelligence and law, there is now
much agreement about the structure and properties of rules.
[14, 25, 18, 31]:

1. Rules have properties, such as their date of enactment, ju-
risdiction and authority.

2. When the antecedent of a rule is satisfied by the facts of

a case, the conclusion of the rule is only presumably true,

not necessarily true.

Rules are subject to exceptions.

Rules can conflict.

5. Some rule conflicts can be resolved using rules about rule

priorities, e.g. lex superior, which gives priority to the rule

from the higher authority.

Exclusionary rules provide one way to undercut other rules.

7. Rules can be invalid or become invalid. Deleting invalid
rules is not an option when it is necessary to reason retroac-
tively with rules which were valid at various times over a
course of events.

8. Rules do not counterpose. If some conclusion of a rule is
not true, the rule does not sanction any inferences about
the truth of its premises.

Ll

2

One consequence of these properites is that rules cannot
be modeled adequately as material implications in predicate
logic. Rules need to be reified as terms, not formulas, so as to
allow their properties, e.g. date of enactment, to be expressed
and reasoned about for determing their validity and priority.

Rules can be modelled as tuples of the type (name: symbol,
premises: list[statement], exceptions: list[statement], assump-
tions: list[statement], conclusions: list[statement]), denoted r:

cl, ..., cn <= pl, ..., pn., where r is the name of the rule,
pl, ..., p2 are the premises, exceptions and assumptions of
the rule, in any order, and cl, ..., cn are the conclusions of

the rule. Exceptions and assumptions in rules are denoted un-
less p and assuming p, respectively, to distinguish them from
ordinary premises.

In the Pleadings Game [14], I presented one of the first
computational models of a scheme for argument from rules.
At about the same time, similar work was published by Hage
and Verheij [18, 31], and Prakken and Sartor [25]. From this
work the following scheme for arguments from rules can be
distilled.

Argument from Rules

Let (r1,P,E,A,C) be a rule.

Rule Premises. Let pl, ..., pn be the premises in P.

1. pl is true.
2. ...
3. pn is true.

Rule Exceptions. Is some e in E true?

Rule Assumptions. Is every a in A true?

Validity Assumption. Is valid(rl) true?

Exclusionary Exception. Is excluded(rl,c) true, for the
conclusion c in C at issue?

Priority Exception. For the conclusion c at issue, is there
a rule r2 such that priority(r2,rl,c)?

Conclusions. Let cl, ..., cn be the statements in C.

1. applicable(rl)
2. cl is true.
3. ...

4. cn is true.

The priority exception represents the critical question for
asking whether there is some other applicable rule r2 of higher
priority that can be used to reach a conclusion c2 which is
complementary, and thus contradictory, to the conclusion c
of r at issue. Let al be the argument cl since P1 and a2 the
argument c2 since P2. If cl and c2 are contradictory then, in
Pollock’s [23] terms, al and a2 rebut each other. Some way is
needed to resolve conflicts among rebuttals. Carneades uses
proof standards for this purpose [15]. The priority exception
provides an alternative, more specific way to resolve conflicts
among arguments from rules, by undercutting arguments from
lower priority rules. This approach is one way to enable issues
about rule priorities to be raised and resolved via argumen-
tation, in a uniform way, just like other issues.

To illustrate, here is a small rulebase about German family
law:

§1589: direct-lineage(x,y) < ancestor(x,y).

§1601: obligated-to-support(x,y) < direct-lineage(x,y).

§1602: not obligated-to-support(x,y) < not needy(x).

§1611: excluded(§1601, obligated-to-support(y,x)) <
neediness-caused-by-own-immoral-behavior(x).

This models the following rules. §1589 states that ancestors
are persons in direct lineage. §1601 states the general rule that

persons in direct lineage are obligated to support each other.
81602 states an exception: there is no obligation to support
a person who is not needy. §1611 excludes from §1601 needy
relatives whose neediness was caused by their own immoral
behavior.

To implement the scheme for argument from rules,
satisfying the protocol, we need a function, let us call
it argument-from-rules, of type list[rule] = (arguments:
set[argument], assumptions: set[statement], issue: statement) =
stream[argument]. Let family-support-law be the list of rules
defined above. Let family-support-scheme be argument-from-
rules(family-support-law). Let G be a set of arguments and A
an empty set of assumptions.

Suppose we want to use this scheme to find arguments for
Max being obligated to support Gertrude. Let p be the goal
statement obligated-to-support(Max,Gertrude). Then family-
support-scheme(G,A,p) generates the following argument:

stream(obligated-to-support(Max,Gertrude) since
[direct-lineage(Max,Gertrude),
assuming valid(§1601),
unless excluded(§1601,
obligated-to-support(Max,Gertrude)),
unless priority(§1602,§1601,
obligated-to-support(Max,Gertrude)])

The priority exception in this example is more specific than
necessary. The argument can be undercut by any rule having
priority over §1601, not just §1602. But stating this excep-
tion more generally would require us to violate the simpli-
fying assumption restricting statements to ground formulas.
The Carneades implementation can handle variables and the
simplification was made only for expository purposes.

5 Argument from Cases

There are various forms of case-based reasoning. The simplest
forms are variations of the scheme for argument from analogy,
which use some similarity measure to compare cases. More
complex schemes compare theories constructed from a set of
cases, and order competing theories by their coherence. In this
section, we present Wyner and Bench-Capon’s reconstruction
of the CATO [2] model of analogical case-based reasoning
as a set of argumentation schemes [36]. CATO, in turn, is a
refinement of Ashley’s work on HYPO [3].

Walton [35, p. 96] presents a basic scheme for argument
from analogy, as follows:

Argument From Analogy

Similarity Premise. Case cl is similar to case c2.
Base Premise. Proposition p is true (false) in case cl.
Conclusion. p is true in c2.

The challenge when modeling reasoning by analogy is to
operationalize the concept of similarity. In CATO, a casebase
is about a particular issue, such as, in a case-base about fam-
ily law, whether providing support to a family member would
cause undue hardship. A case is modeled as a set of proposi-
tional factors, arranged in a factor hierarchy. Each factor fa-
vors one side of the issue. Factors in favor of the proposition at

issue are called “plaintiff factors”; factors against the proposi-
tion at issue are called “defendant factors”. In our family law
example, a short expected duration of support is a defendant
factor, while irreparable harm to a person’s relationship with
his immediate family is a plaintiff factor. Two cases are consid-
ered similar if they have factors in common. If two conflicting
precedents are similar to the current case, the argument from
the more ‘on-point’ case is stronger. Let cc be the current
case. Define more-on-point to be a function of type (pcl: case,
pc2: case) = Boolean where more-on-point(pcl,pc2) is true if
factors(pcl) N factors(pc2) D factors(pc2) N factors(cc).

Arguments are constructed by comparing the set of factors
of the current case with the factors of precedent cases. Each
precedent case is modeled as a set of factors together with the
decision of the case regarding the issue of the casebase, undue
hardship in our example. Let factors, pfactors and dfactors be
functions of type case = set[factor] for selecting all factors,
the plaintiff factors and the defendent factors, respectively, of
a case. Let decision be a function of type case = {plaintiff,
defendant} such that decision(c) equals the party in whose
favor the issue was decided. Let other-party be a function of
type party =party such that other-party(defendant) = plaintiff
and other-party(plaintiff) = defendant.

Wyner and Bench-Capon defined seven partitions of the
set of factors of a precedent case compared to the current
case. Each partition is a function of type case = set[factor].
Let pc be a precedent case. For example, partitionl(pc) is the
intersection of the plaintiff factors in pc and the current case.
Similarly, partition2(pc) is the intersection of the defendant
factors of pc and the current case.

Wyner and Bench-Capon defined six case-based argumen-
tation schemes using these partitions. The three example
schemes below are based on Wyner and Bench-Capon’s, but
reflect more closely their implementation in Carneades.

AS1. Factor Comparison Scheme

Let cc be the current case and q be the proposition at issue
in the casebase.

Premise. The factors of the current case favor party p, de-
noted factors-favor(p).
Conclusion. q, if p = plaintiff, otherwise complement(q).

AS2. Preference from Precedent Scheme

Let cc be the current case, pcl be some precedent case and p
be a party.

P Factors Premise. P1 is partitionl(pcl).

D Factors Premise. P2 is partition2(pcl).

Outcome Premise. decision(pcl) = plaintiff.

Counterexample Exception. There exists a precedent
case, pc2, such that is-counterexample(pc2,pcl).

Conclusion. factors-favor(p)

Counterexample Scheme

Let pcl and pc2 be precedent cases.

Premise. decision(pcl) = pl

Premise. decision(pc2) = other-party(p1)
Premise. more-on-point(pc2,pcl).
Conclusion. is-counterexample(pc2,pcl)

To illustrate these schemes, let us define a simple case base
about undue-hardship. There are five factors, three for the
plaintiff and two for the defendant:

Plaintiff Factors

1. has-already-provided-much-support

2. never-had-parent-child-relationship

3. would-cause-irreparable-harm-to-family
Defendant Factors

1. expected-duration-of-support-is-short

2. has-not-provided-care

The casebase, cbl, consists of only three precedent cases,
Miiller, Bauer and Schmidt:

Miiller. Decided for plaintiff. Factors: {never-had-a-parent-
child-relationship}.

Schmidt. Decided for defendant. Factors: {never-had-a-
parent-child-relationship, expected-duration-is-short}.

Bauer. Decided for plaintiff. Factors: {never-had-a-parent-
child-relationship, expected-durations-is-short, would-cause-
irreparable-harm-to-family}

Let argument-from-cases be a function of type list[case] =
(arguments: set[argument], assumptions: set[statement], issue:
statement) = stream[argument], matching the protocol for
argumentation schemes. Let argument-from-cb1l be argument-
from-cases(cbl).

Let A be a set of factors assumed to be true in the
case: { not has-already-provided-much-support,
expected-duration-of-support-is-short, never-had-parent-child-
relationship, would-cause-irrepairable-harm-to-family, not
has-not-provided-care}.

Let G be a set of arguments. The factors of the current
case, cc, used for comparison with precedent cases, are the
propositions which are acceptable in the set of arguments G,
given the assumptions, i.e. factors(cc) = {p | acceptable(G,A,p)
1.

We can use the argument-from-cbl instantiation of the
argument-from-cases scheme to construct arguments for
undue-hardship in the current case, with argument-from-
cb1(G,factors(cc),undue-hardship), which equals:

current

stream(undue-hardship since
[factors-favor(plaintiff,undue-hardship)])

The argument returned was constructed using the AS1
(Factor Comparison) argumentation scheme. We can use
the arguments-from-cbl argumentation scheme again, back-
ward chaining, to construct the following argument from the
premise of this argument:

argument-from-cb1(G,
factors(cc),
factors-favor(plaintiff,undue-hardship)) =

stream(factors-favor(plaintiff,undue-hardship) since
[never-had-parent-child-relationship,
unless is-counterexample(Schmidt,Miiller)])

This argument, while correct, is more concrete than we
would like, since the exception asks only if the Schmidt prece-
dent is a counterexample to the cited case, Miiller, rather than
asking whether any case in the casebase is a counterexample.
Once again, this is due to the simplifying assumption restrict-
ing statements to ground formulas. In the argument returned
by Carneades implementation, Schmidt would be replaced by
a variable.

In fact, Schmidt is a counterexample to Miiller. The coun-
terexample scheme could be used to construct an argument
for the exception, undercutting the argument above. But since
Bauer is even more on-point than Schmidt, the counterexam-
ple scheme could be used again to undercut the argument
from Schimdt.

6 Argument from Testimonial Evidence

In court proceedings, a basic source of evidence about the
facts of the case is witness testimony. Similarly, in adminis-
trative procedures of public agencies, such as procedures for
determing tax obligations or rights to social benefits, citizens
provide information about the facts, typically by completing
forms. In both cases, the conclusions one may draw are only
presumptively true. Witnesses do not always tell the truth
or can be mistaken. Tax declarations are audited for good
reasons. Thus the conventions of an agency, court or other or-
ganziation for drawing inferences from claims and testimony
can be viewed as argumentation schemes.

Walton considers argument from testimonial evidence to
be a specialization of the following scheme for argument from
position to know [34, p. 46]:

Argument from Position to Know

Major Premise. Source a is in a position to know about
things in a certain subject domain s containing proposition
p.

Minor Premise. a asserts that p is true (false).

Trustworthiness Exception. a is not trustworthy, reliable
or honest.

Conclusion. p is true (false).

One way to implement a computational model of witness
testimony is to use a database to store answers to questions.
In Carneades, conceptually we use a database schema with
the following four tables:

1. A witness table storing information about persons, such as
their name and contact information.

2. A question table stores the information needed for ask-
ing questions of the form: Is it the case that predi-
cate(subject,object)? For example: Is it that case that
Gertrude is the mother of John, mother(John,Gertrude)?
Readers familiar with the Resource Description Framework
(RDF) will recognize such statements as triples [20]. Triples
can represent both binary and unary relations and thus

are sufficient for representing all description logic asser-
tions. Unary relations can be modeled as in this exam-
ple: isa(Joe,Person). The question table records the type of
the object of each predicate (e.g. symbol, number, string,
Boolean) and the cardinality of the predicate (one or
many), along with a text to be used as a template for asking
questions in natural language.

3. A answer table stores the answers to questions. For pred-

icates with a cardinality greater than 1, it is also noted
whether all values of the object of the predicate have been
provided by the witness, or only some. If a witness asserts
there are no further values, then this can be used by an ar-
gumentation scheme to construct arguments against claims
of other values, as will be discussed in more detail below.

4. Finally, a form table stores a set of forms, where each form

is a sequence of questions. This enables dialogues to be
structured more coherently, by asking related questions at
the same time. For example, when asking for a person’s
name, one could also ask for essential contact information.

This database is used to construct arguments for proposi-
tions at issue by first matching the proposition at issue to the
questions in the questions table. If a question can be found,
we then check whether the question for this issue has already
been asked. The question has been asked if there is an entry
in the answer table for this question. If the witness was not
able to provide any answers, the set of values will be empty. If
the question has not been asked, or the witness when first an-
swering the question indicated he knew further answers, the
question is asked and the answers are both stored in the an-
swers table and used to construct the arguments returned by
the argumentation scheme. If the question has been previously
asked and the witness had indicated that he had provided all
the answers he was able to provide, arguments are constructed
from these answers and returned, without modifying the an-
swers table. While this is admittedly a very operational and
procedural description of the process of constructing argu-
ments using this scheme, rather than a declarative definition
of a mathematical function, it should be remembered that ar-
gumentation schemes, in their role as argument generators,
are methods for constructing arguments. While some of these
methods can be defined functionally others are more naturally
defined in procedural terms.

If the proposition at issue is p(s,0), the witness had testi-
fied that he had provided all the values of the p property of
s and o is not one of those values, than an argument is con-
structed con the proposition p(s,0) from this testimony. Such
a con argument is reminiscent of negation as failure (NAF)
in logic programming, but is different in a few ways. First,
it is restricted in scope to triples with particular predicates
and subjects, whereas NAF applies to all atomic propositions.
Second, such arguments are supported by the testimony of
a witness who expressly stated that no further values exist,
whereas NAF is based on the closed-world assumption, that
all relevant facts are known and in the database. In our ap-
proach, the closed-world assumption is not made. Finally, con
arguments constructed in this way can be rebutted or under-
cut by other arguments, also by testimony of other witnesses.
There is nothing comparable in NAF.

This model of a scheme for argument from witness tes-
timony provides functionality similar to the way rule-based

systems ask users for information when there are no rules for
deriving some needed fact. But our model is more general as
it can handle possibly conflicting testimony about the same
issue from more than one witness.

Let us illustrate this data model with a few questions from
the German family law example:

predicate ‘ type ‘ cardinality ‘ template

mother symbol one Who is _’s mother?
father symbol one Who is _’s father?

child symbol many Who is a child of _?
needy boolean one Is _ needy?

Let testimony be the type of a database with the
above tables and argument-from-testimony be a function of
type testimony = (arguments: set[argument], assumptions:
set[statement], issue: statement) = stream[argument], match-
ing the protocol for argumentation schemes.

To illustrate this model of an scheme for argument from
witness testimony, using our German family law domain, let
testimonyl be a database of type testimony, with a record
of Max’s testimony. Suppose Max has yet to be asked
any questions. We can construct an argument generator
from his testimony as follows. Let argument-from-testimonyl
be argument-from-testimony(testimonyl). Now, to ask Max
whether Gertrude is his mother, we can evaluate argument-
from-testimony1(G,A, mother(Max,Gertrude)). Assuming he an-
swers yes, this results in the following argument:

stream(mother(Max, Gertrude) since
[unless not trustworthy(Max)])

In this argument, the major and minor premises of the
scheme for argument from position to know has been left im-
plicit.?

7 Related Work

Most prior work on computational models of argumentation
schemes has focused on their role as patterns for classifying
arguments and revealing implicit premises, to support the pro-
cess of argument reconstruction. For example, Aracuaria pro-
vides a way to define templates for argumentation schemes
and to use these templates to classify arguments and their
premises [28]. Recently, an OWL ontology of many of Wal-
ton’s argumentation schemes has been developed, with the
aim of being able to use description logic theorem provers to
classify arguments [27]. Others have focused on the problem
of how to model in a computational argumentation framework
the critical questions of argumentation schemes and investi-
gated how such critical questions affect the burden of proof
when evaluating the acceptability of statements given a set of
arguments [32, 15].

In artificial intelligence, the blackboard architecture for hy-
brid knowledge-based systems, as first implemented in the
Hearsay-II speech understanding system [12], provides a way
for multiple inference engines to work together on solving a

5 In Carneades, all arguments are annotated with an identifier of
the scheme used to construct the argument, so it is not necessary
to use pattern matching to try to identify the scheme used, unlike
when using schemes to reconstruct arguments in natural language
texts.

problem. Each inference engine uses its own knowledge source,
modeled in whatever way is appropriate for its particular rea-
soning methods. In blackboard systems, the inference engines
collaborate by writing statements to a shared data structure,
called the ‘blackboard’. In Hearsay-II, the statements repre-
sent hypotheses about the utterances being interpreted. Infer-
ence engines use the statements on the blackboard as input
to their reasoning methods, in a forward-chaining, data-driven
way. Whenever sufficient data is on the blackboard for some
reasoning method of an inference engine to be applicable, the
inference engine announces this to a scheduler. If several infer-
ence engines have applicable methods, the scheduler decides
in which order to apply the methods. The inference engines
can derive conflicting conclusions. Hearsay-II provides some
way to weigh or order inference engines to resolve these con-
flicts.

Later blackboard systems, such as Walker’s Expander le-
gal expert system [33], recorded not only statements on the
blackboard, but also justifications for these statements, what
we would now call arguments, using a reason-maintenance
system [10, 9] to manage dependencies between statements.
As the inference engines continue to work on problems and
post further information to the blackboard, the reason main-
tenance system would update the status of the statements on
the blackboard, labeling them ‘in’ or ‘out’.

Clearly there are similarities between our approach to hy-
brid reasoning using argumentation schemes and blackboard
systems. The role of inference engines is played by argument
generators. And the acceptable function, of type (arguments:
set[argument], assumptions: set[proposition], issue: proposition)
= Boolean can be viewed as providing reason-maintenance
services. There are however significant differences. Firstly,
argument generators are not problem solvers. They do not
implement problem-solving methods with their own control
strategies. Rather, a set of argument generators induces a
space of sets of arguments which can be searched using a cen-
tralized search strategy. Secondly, whereas blackboard sys-
tems forward chain from the statements on the blackboard,
our approach allows the space of arguments to be searched in
a goal-directed way.

As Walker notes, any architecture for integrating hybrid
reasoners requires a formal language for expressing statements
which is “powerful enough to express the input to and output
from any of the knowledge sources” [33, p. 76]. Our approach
places few restrictions on the language used for expressing
statements in argumentation schemes, requiring only equality
and complement operators. The formalism currently used in
Carneades allows some meta-level statements to be expressed.
For example, it is possible to state that some rule is not ap-
plicable to some other statement. This formalism may need
to be extended as further argument generators are added to
the system.

The problem of translating between the languages used by
different ‘problem-solving methods’ is the focus of a recent
manuscript by Henry Prakken [24], in which he develops a
model of ‘I/O transformers’ between problem-solvers, and il-
lustrates this method with transformers for first-order logic,
Bayesian probability theory and two versions of default logic.
We speculate that such I/O transformers can be reconstructed
as argument generators in our framework, but this needs to
be validated in future work.

Finally, I would like to mention the Babylon system [8], de-
veloped by the German National Research Center for Com-
puter Science (GMD). Babylon is an expert system ‘shell’ in-
tegrating inference engines for production rules, Horn clause
logic (as in Prolog), frames (i.e. a form of object-oriented pro-
gramming), and a constraint satisfaction system. Bablyon’s
approach to hybrid reasoning consists of an extensible meta-
interpreter, which manages a set of problem-solving tasks and
dispatches tasks to inference engines based on the structure of
the task and meta-knowledge about the kinds of task each in-
ference engine can handle. Babylon’s main achievement was in
finding a way to integrate a number of high-level programming
paradigms, taking into considering their various operational
semantics. In contrast, our system is designed to integrate
methods for constructing arguments from diverse argument
sources, such as legislation, precedent cases and testimonial
evidence.

Some research in the artificial intelligence and law field has
addressed ways of integrating reasoning with rules and cases
[13, 7, 30, 26] and ways to resolves conflicts among arguments,
such as prefering arguments from cases to arguments from
rules [13, 7, 30]. Our work aims to generalize these results
by providing an open, extensible architecture for integrating
models of any argumentation scheme.

8 Conclusion

Two functions of argumentation schemes can be distin-
guished, as argument patterns useful for reconstructing argu-
ments from natural language texts, and as methods for gen-
erating arguments from argument sources, such as legislation
or precedent cases. In many fields, such as the law, solving
problems requires several forms of reasoning to be integrated.
Our thesis is that argumentation schemes, in their capacity as
argument generators, together with an argumentation frame-
work such as Carneades, can provide the foundation for an
open architecture for integrating multiple forms of reasoning.
We have tested this thesis with models of several argumenta-
tion schemes, for argument from ontologies, rules, cases and
testimonial evidence, together with an example from German
family law, showing how these schemes can be used together
to argue about the issues of a case.

In this architecture, there is a division of responsibility be-
tween the schemes and the argumentation framework. The
schemes define a search space of argument sets or graphs.
The argumentation framework is used to evaluate the accept-
ability of arguments or statements in each state of the search
space. A party can use a system which implements this archi-
tecture as a tool for constructing arguments in support of or
opposing some position by heuristically searching the space
for a set of arguments in which the position is acceptable or
not acceptable, respectively. After the arguments found are
put forward in the dialogue, the opposing party can use the
same or another implementation of the architecture, perhaps
with other argumentation schemes, to search for counterargu-
ments.

All the argumentation schemes presented have been imple-
mented in Carneades, as part of the European ESTRELLA
project, and used to build a number of demonstrators in the
legal domain. Carneades is freely available on the Web, as

Open Source software.%

The demonstrators of the ESTRELLA project are proto-
types of expert systems for helping citizens to apply legisla-
tion in order to assess their legal rights and obligations. Most
deployed legal expert systems are currently built using rule-
based systems technology from the 1980s. While such systems
have proven their usefulness for supporting the processing of
complex claims in public administration as well as the private
sector, for example in the insurance industry, they are based
on the simplifying assumption that the relevant laws and reg-
ulations can be adequately modeled as a logical theory. Claims
assessment is viewed as deduction, in which a theory is ap-
plied to the facts of the case to deduce legal consequences.
Lawyers have long understood that in general legal reason-
ing cannot be reduced to deduction in this way. Rather, le-
gal reasoning generally involves the iterative construction and
comparison of alternative theories of the facts and the law, in-
terpreting both the evidence and the relevant legal sources,
in an argumentative process. Our aim in modeling argumen-
tation schemes is to develop tools which can help people to
construct a wide variety of arguments, improving their ability
to protect their interests in dialogues, especially in the legal
domain.

Acknowledgments

The work reported here was conducted as part of the Eu-
ropean ESTRELLA project (IST-4-027655). I would like to
thank Alexander Boer, Trevor Bench-Capon, Joost Breuker,
Tom van Engers, Rinke Hoekstra, Henry Prakken, Doug Wal-
ton, and Adam Wyner for fruitful discussions about topics
related to this paper.

REFERENCES

[1] New Ozford American Dictionary, eds., Frank Abate and
Elizabeth J. Jewell, Oxford University Press, 2001.

[2] Vincent Aleven, Teaching Case-Based Argumentation
Through a Model and Ezxamples, Ph.d., University of
Pittsburgh, 1997.

[3] Kevin D. Ashley, Modeling Legal Argument: Reasoning with
Cases and Hypotheticals, Artificial Intelligence and Legal
Reasoning Series, MIT Press, Bradford Books, 1990.

[4] The Description Logic Handbook — Theory, Implementation
and Applications, eds., Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
Cambridge University Press, 2003.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila, ‘The se-
mantic web’, Scientific American, 284(5), 34—43, (May 2001).

[6] A.Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni, ‘An
abstract, argumentation-theoretic approach to default reason-
ing’, Artificial Intelligence, 93(1-2), 63-101, (1997).

[7] L. Karl Branting, Reasoning with Rules and Precedents: A
Computational Model of Legal Analysis, Kluwer Academic
Publishers, Dordrecht, 2000. Book version of 1991 PhD The-
sis.

[8] Thomas Christaller, Franco di Primio, and Angi Voss, Die
KI-Werkbank Babylon, eine offene und portable Entwicklung-
sumgebung fiir Ezpertensysteme, Addison-Wesley, Reading,
Mass., 1989.

[9] Johan de Kleer, ‘An assumption-based TMS’, Artificial Intel-
ligence, 28(2), 127-162, (1986).

[10] Jon Doyle, ‘A truth maintenance system’, Artificial Intelli-
gence, 12, 231-272, (1979).

6 http://carneades.berlios.de

http://carneades.berlios.de

(11]

(12]

13]

(14]

(15]

(16]

(17]

(18]
(19]
[20]
(21]
(22]
(23]

(24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

Phan Minh Dung, ‘On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games’, Artificial Intelligence, 77(2), 321—
357, (1995).

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and
D. Raj Reddy, ‘The Hearsay-II speech-understanding system:
Integrating knowledge to resolve uncertainty’, ACM Comput.
Surv., 12(2), 213-253, (1980).

Anne Gardner, An Artificial Intelligence Approach to Legal
Reasoning, MIT Press, 1987.

Thomas F. Gordon, The Pleadings Game; An Artificial In-
telligence Model of Procedural Justice, Springer, New York,
1995. Book version of 1993 Ph.D. Thesis; University of Darm-
stadt.

Thomas F. Gordon, Henry Prakken, and Douglas Walton,
‘The Carneades model of argument and burden of proof’, Ar-
tificial Intelligence, 171(10-11), 875-896, (2007).

G. Governatori, M.J. Maher, G. Antoniou, and D. Billing-
ton, ‘Argumentation semantics for defeasible logic’, Journal
of Logic and Computation, 14, 675-702, (2004).

Benjamin N. Grosof, ITan Horrocks, Raphael Volz, and Ste-
fan Decker, ‘Description logic programs: Combining logic pro-
grams with description logics’, in Proceedings of the Twelth
International World Wide Web Conference (WWW 2003),
pp. 48-57, Budapest, Hungary, (May 2003). ACM.

Jaap C. Hage, Reasoning with Rules — An Essay on Legal
Reasoning and its Underlying Logic, Kluwer Academic Pub-
lishers, Dordrecht, 1997.

Jim D. Mackenzie, ‘Question-begging in non-cumulative sys-
tems’, Journal of Philosophical Logic, 8, 117-133, (1979).
Frank Manola and Eric Miller. RDF primer, 2004.

Deborah L. McGuinness and Frank van Harmelen. OWL
Web Ontology Language overview. http://www.w3.org/TR/
owl-features/.

Donald Nute, ‘Defeasible logic’, in Handbook of Logic in Ar-
tificial Intelligence and Logic Programming, eds., D. Gabbay,
C.J. Hogger, and J.A. Robinson, 253-395, Clarendon Press,
Oxford, (1994).

John Pollock, ‘Defeasible reasoning’,
11(4), 481-518, (1987).

Henry Prakken, ‘Handling conflicts in combining modes of
reasoning’. unpublished manuscript, April 2008.

Henry Prakken and Giovanni Sartor, ‘A dialectical model of
assessing conflicting argument in legal reasoning’, Artificial
Intelligence and Law, 4(3-4), 331-368, (1996).

Henry Prakken and Giovanni Sartor, ‘Modelling reasoning
with precedents in a formal dialogue game’, Artificial Intelli-
gence and Law, 6(2-4), 231-287, (1998).

Iyad Rahwan and B. Banihashemi, ‘Arguments in OWL: A
progress report’, in Proceedings of the 2nd International Con-
ference on Computational Models of Argument (COMMA),
ed., Antony Hunter, Amsterdam, The Netherlands, (2008).
IOS Press.

C.A. Reed and G.W.A. Rowe, ‘Araucaria: Software for ar-
gument analysis, diagramming and representation’, Interna-
tional Journal of AI Tools, 13(4), 961-980, (2004).
Guillermo R. Simari and Ronald P. Loui, ‘A mathematical
treatment of defeasible reasoning and its implementation’, Ar-
tificial Intelligence, 53(2-3), 125-157, (1992).

David B. Skalak and Edwina L. Rissland, ‘Arguments and
cases: An inevitable intertwining’, Aritificial Intelligence and
Law, 1(1), 3-45, (1992).

Bart Verheij, Rules, Reasons, Arguments. Formal Studies of
Argumentation and Defeat, Ph.d., Universiteit Maastricht,
1996.

Bart Verheij, ‘Dialectical argumentation with argumentation
schemes: An approach to legal logic’, Artificial Intelligence
and Law, 11(2-3), 167-195, (2003).

Rob Walker, An Ezxpert System Architecture for Hetergeneous
Domains — A Case Study in the Legal Field, Ph.D. disserta-
tion, Vrije Universiteit Amsterdam, 1992.

Douglas Walton, Legal argumentation and evidence, Pennsyl-
vania State University Press, University Park, PA, 2002.
Douglas Walton, Fundamentals of Critical Argumentation,

Cognitive Science,

(36]

Cambridge University Press, Cambridge, UK, 2006.

Adam Wyner and Trevor Bench-Capon, ‘Argument schemes
for legal case-based reasoning’, in JURIX 2007: The Twenti-
eth Annual Conference on Legal Knowledge and Information
Systems, (2007).

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

	Introduction
	Argumentation Schemes
	Argument from Ontology
	Argument from Rules
	Argument from Cases
	Argument from Testimonial Evidence
	Related Work
	Conclusion

