
QualiPSo
Quality Platform for Open Source Software

IST- FP6-IP-034763

Deliverable A1.D2.1.3
Report on Prototype Decision Support System

for OSS License Compatibility Issues

Thomas F. Gordon
Fraunhofer FOKUS, Berlin

Due date of deliverable: dd/mm/yyyy

Actual submission date: 23/9/2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This work is partially funded by EU under the grant of IST-FP6-034763.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 1 of 36

CHANGE HISTORY

Version Date Status Author (Partner) Description

0.8 04.08.10 Tom Gordon (Fraunhofer) initial draft

0.9 01.09.10 Benjamin Egret (INRIA) corrections

1.0 23.09.10 final Tom Gordon (Fraunhofer)

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 2 of 36

EXECUTIVE SUMMARY

Building on Semantic Web technology and our prior theoretical and practical work on
the Carneades argumentation system, we have developed a proof-of-concept, prototype
system for helping developers to construct, explore and compare legal theories when
analysing open source licensing issues in particular cases. The prototype takes into
consideration an analysis of requirements. This analysis concludes that the resolution of
open source licensing issues is an argumentative process in which alternative theories of
copyright law concepts, such as the concept of a derivative work, together with the facts
of particular cases, are constructed and critically evaluated. An ontology of open source
licences has been developed, using the Web Ontology Language (OWL) and this
ontology has been used to model several popular open source licenses, including the
Apache 2.0, BSD and MIT academic licenses, as well as the MPL, EPL and GNU GPL
reciprocal licenses. Several variants of the GNU GPL are included in the model,
including the GNU AGPL and the GNU LGPL. In addition we have developed an
ontology for describing software projects, including various relationships between
software entities used by the project, at the level of abstraction required for analysing
licensing issues. A couple of alternative theories of the legal concept of a derivative
work have been modelled using defeasible inference rules in the Legal Knowledge
Interchange Format (LKIF). Finally, these theories are used to construct, evaluate and
visualize pro and con arguments about whether or not a particular open source license
may be used by an example software project.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 3 of 36

DOCUMENT INFORMATION

IST Project Number FP6 – 034763 Acronym QualiPSo

Full title Quality Platform for Open Source Software

Project URL http://www.qualipso.org

Document URL

EU Project officer Charles MacMillan

Deliverable Number A1.D2.1.3 Title Report on Prototype Decision Support System for OSS
License Compatibility Issues

Work Package
Number

01.03.10 Title Compatibility

Activity Number A1 Title Legal Issues

Date of delivery Contractual Actual

Status Version 1.0, dated 9/10/2009 final

Nature Report

Dissemination Level Public

Abstract
(for
dissemination)

Building on Semantic Web technology and our prior theoretical and practical work on the
Carneades argumentation system, we have developed a proof-of-concept, prototype
system for helping developers to construct, explore and compare legal theories when
analysing open source licensing issues in particular cases. The prototype takes into
consideration an analysis of requirements. This analysis concludes that the resolution of
open source licensing issues is an argumentative process in which alternative theories of
copyright law concepts, such as the concept of a derivative work, together with the facts of
particular cases, are constructed and critically evaluated. An ontology of open source
licences has been developed, using the Web Ontology Language (OWL) and this ontology
has been used to model several popular open source licenses, including the Apache 2.0,
BSD and MIT academic licenses, as well as the MPL, EPL and GNU GPL reciprocal
licenses. Several variants of the GNU GPL are included in the model, including the GNU
AGPL and the GNU LGPL. In addition we have developed an ontology for describing
software projects, including various relationships between software entities used by the
project, at the level of abstraction required for analysing licensing issues. A couple of
alternative theories of the legal concept of a derivative work have been modelled using
defeasible inference rules in the Legal Knowledge Interchange Format (LKIF). Finally,
these theories are used to construct, evaluate and visualize pro and con arguments about
whether or not a particular open source license may be used by an example software
project.

Keywords

Authors (Partner) Thomas F. Gordon (Fraunhofer FOKUS)

Responsible
Author

Thomas F. Gordon Email thomas.gordon@fokus.fraunhofer.de

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 4 of 36

TABLE OF CONTENTS

1 INTRODUCTION.. 6

2 PROBLEM STATEMENT: LICENSE ISSUES AND ARGUMENTATION.. 7

3 SYSTEM DESIGN: OVERVIEW OF THE CARNEADES ARGUMENTATION SYSTEM.........................11

4 PROTOTYPE: A TOOL FOR ANALYZING OPEN SOURCE LICENSING ISSUES16

5 CONCLUSION... 32

6 ACKNOWLEDGEMENTS.. 33

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 5 of 36

1 INTRODUCTION

The previous Qualipso report of WP1.3, “Report on Problem Scope and Definition
about OSS License Compatibility” (Deliverable A1.D2.1.3), surveyed some of the legal
issues which can arise when multiple software components, licensed with different open
source licenses, are combined into collective or derivative works and developed a
concrete scenario to illustrate legal issues which need to be considered by the
developers of open source software. The basic concepts of copyright law were
explained, insofar as they are relevant for license compatibility issues and the kinds of
legal sources were surveyed which need to be taken into consideration and interpreted
when analysing license compatibility issues. Finally, the report included a brief
overview of legal reasoning and argumentation, showing how the resolution of open
source license compatibility issues, like all legal issues, is a creative, theory-
construction process which is not well-defined and thus cannot be fully automated.

In the current report, selected methods from the state-of-the-art of computational
models of law, legal reasoning and argumentation are applied to develop a prototype
system for helping developers to construct, explore and compare legal theories when
analysing open source licensing issues in particular cases.

The remainder of this report is organized as follows. So that this report is self-contained,
Section 2 summarizes the main conclusions about the nature of open source license
compatibility problems, from the previous WP1.3 report. Section 3 presents the design
of the prototype system for helping developers to analyse open source compatibility
issues and explaining how methods from computational models of law, legal reasoning
and argumentation are applied. The prototype is illustrated in Section 4, using data
based on a real system currently under construction. Section 5 presents conclusions and
summarizes the main results.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 6 of 36

2 PROBLEM STATEMENT: LICENSE ISSUES AND ARGUMENTATION

In our previous Qualipso report we illustrated some license compatibility issues which
developers must face when combining components subject to different licenses and
surveyed the kinds of legal sources, such as statutes, case law and legal principles,
which must be taken into consideration when analyzing these issues. We came to the
conclusion that open source license compatibility issues cannot be analysed in the
abstract, but must be analysed in the light of the particular material facts of a case and
the legal norms of the applicable jurisdiction.

In legal practice there is never a uniquely right answer to some legal issue. Even if one
takes the position that in principal there must be one right answer, in practice reasonable
people can and will disagree about what this answer should be. Good arguments can
always be made on both sides of any issue. Deciding legal issues requires good
judgement, not just good logic. Legal problems are not well-formed and thus cannot be
fully automated. Legal reasoning is a creative, synthetic process involving the
construction, evaluation and comparison of theories. While formal, analytical methods
can be useful for analysing the logical consequences of these theories, no formal
method can generate all possible theories, since the search space of theories is not
enumerable. This nature of legal reasoning leads to some necessary uncertainty and risk
which cannot be entirely eliminated. This is as true for open source software
development as for any other activity regulated by law.

The mainstream view within jurisprudence and legal informatics is that legal reasoning
involves the construction, evaluation and comparison of alternatives theories of the law
and facts of the case [7,11,23,27]. Typically this takes place in critical dialogues, during
which arguments pro and con the alternative theories are put forward by the parties.

Figure 1 illustrates relations between different kinds of legal and factual issues, all of
which are resolved by argumentation. In this simple example, the plaintiff’s main claim
is that the defendant violated his copyright by giving his wife a copy of some software.
This claim is supported by an argument with two premises: the major premise, asserting
the rule that copyright owners have the exclusive right to distribute their works, and the
minor premise, expressing the antecedent of the rule, namely that the defendant in fact
distributed a copyrighted work. The propositional content of the minor premise is called
an ultimate fact, since it is expressed in the same terms, and at the same level of
generality, as the antecedents of the legal rule being applied. That is, the ultimate facts
are formulated using technical legal terminology. Putting forward this argument does
not by itself resolve the main claim, that there was a copyright violation. On the
contrary it raises two new issues which need in turn to be resolved by argumentation: 1)
Is the asserted rule about distributing copies a valid legal rule? And 2) What did the
defendant do, more concretely, that is claimed to be a distribution of copies? For the
first of these issues, the claimed rule is backed by putting forward an argument citing
the source of legal statute, 17 U.S.C. § 106. The plaintiff is arguing that the claimed rule
is a coherent interpretation of this section. Regarding the second issue, about what the
plaintiff is claiming the defendant did, more concretely, which amounts to an illegal
distribution of the copyrighted work, the plaintiff has put forward an argument claiming
that the defendant gave his wife a copy. When the propositional content of a claim is
relatively concrete, using everyday terminology, rather than technical legal vocabulary,
the proposition is called a material fact. Calling ultimate facts and material fact “facts”
does not mean that they are undisputed or settled. In this context “fact” is a synonym for
a proposition about factual issues, as opposed to legal issues, independent of whether or
not the propositions are true, or presumably true. In our example, the claim of the

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 7 of 36

material fact, that the defendant gave his wife a copy, is at issue. The plaintiff has
supported this claim by putting forward yet another argument, this time by providing
evidence in the form of witness testimony for the ex-husband of the defendant’s wife.

Arguments are typically enthymemes. That is, some of the premises of the argument are
implicit. One way to attack an argument is to first reveal an implicit premise and then to
put forward an argument against (con) the premise. For example, an implicit premise of
the argument citing 17 U.S.C. § 106 is that this section of the U.S.C. is still valid law
and has not been modified or repealed before the relevant events of the case. And an
implicit premise of the argument from witness testimony is that the witness is not
biased. The defendant might want to reveal this premise and challenge the witness in an
argument which points out that an ex-husband may be jealous and thus have a motive to
try to harm the defendant, who is the wife’s new husband. For a third example, an
implicit premise of the main argument is that the defendant did not have a license giving
him permission to distribute the software. Thus the defendant might consider countering
this argument by claiming that he has a license.

There are various ways to attack arguments: by attacking a premise, by putting forward
an argument, called a rebuttal, for a contrary conclusion, or by undercutting the
argument with an argument claiming that its major premise does not apply in this case.
For an example of an undercutter, imagine an argument applying an exclusionary rule
stating that 17 U.S.C. § 106 does not apply to software, or to noncommercial
distributions.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 8 of 36

Figure 1: Kinds of Legal and Factual Issues

The process of making claims, putting forward arguments and deciding issues is
regulated by rules of procedure. These procedural rules regulate, among other things,
the distribution of the burden of proof among the parties and the proof standard, such as
the civil law preponderance of evidence standard for resolving issues.

At some point in the proceeding, after all the evidence has been heard and all of the
arguments have been made, the arguments will have to be evaluated. In legal trials, this
is done by judges and, in some legal systems, juries. In the US, if there is a jury, the trial
judge is responsible for deciding legal issues and the jury is responsible for deciding
only factual issues. In theory, both the legal and the factual issues are resolved by
evaluating the theories put forward by the arguments in the case and comparing their
coherence.

These general features of legal reasoning lead us to the following use cases for an
interactive software tool for helping to analyse open source license compatibility issues:

• Declaring a formal logical language (vocabulary) for software systems, licenses
and copyright concepts, including relationships between software works, such as
whether one work has been derived from another.

• Representing both strict and defeasible rules of copyright law and parts of the
software engineering domain relevant for analyzing open source license
compatibility issues. It must be possible to represent and reason with, when
analyzing a single case, rules for alternative interpretations of legal sources, such
as legislation and case law, rules from various levels within a single legal system
(e.g. state and federal law), as well as rules from multiple legal systems (e.g. US
and German copyright law). It must also be possible to reason about priority
relationships between rules, using principals such as lex superior, and to handle
general rules with exceptions.

• Formally defining the terms and conditions of common open source template
licenses, including reciprocal licenses, such as the GNU GPL (hereafter simply
“GPL”) and non-reciprocal licenses, such as the BSD license.

• Describing the material facts of use and derivation relationships between
software works, using the formal language, as well the license or licenses which
apply to each work.

• Representing evidential arguments about the material facts, such as arguments
from witness testimony.

• Constructing legal arguments from the strict and defeasible rules about the legal
issues of a case, such as whether dynamic linking results in a derivative work.

• Evaluating a set of arguments, taking into consideration applicable proof
standards, the allocation of the burden of proof and assumptions about the
beliefs of the “audience”, i.e. the persons responsible for making the decision,
such as a judge or jury, in order to estimate whether or not some legal or factual
claim should be acceptable to the audience.

• Using argumentation schemes to help reveal hidden premises of arguments and
ask sensible critical questions.

• Visualizing relationships among a set of arguments, to obtain a comprehensible
overview and summary of the issues.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 9 of 36

• Determining minimal and consistent set of propositions which, if accepted as
true by the relevant audience, would be sufficient to prove or disprove a given
claim, depending on one's goal.

Again, as should be clear from these use cases, the system is not conceived to be an
algorithm or automatic theorem prover for computing or deriving “the right answer” to
open source license compatibility issues, but rather as an interactive tool for helping
users to construct, evaluate and visualize competing legal and factual arguments.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 10 of 36

3 SYSTEM DESIGN: OVERVIEW OF THE CARNEADES ARGUMENTATION SYSTEM

The prototype application we have developed for analyzing open source license
compatibility issues has been built using our Carneades software system.1 Carneades is
an interactive application for argument construction, evaluation and visualization,
integrating an knowledge-based inference engine and an argument mapping tool. Here
we present an overview of the current version of Carneades, explaining how the tools
can be used to support argumentation tasks and providing some technical information
about how they have been implemented.

Carneades is a set of open source software tools for supporting a range of argumentation
tasks, based on a mathematical model of Doug Walton’s philosophy of argumentation
and developed in collaboration with him over the course of several years, beginning in
2006 [14,15]. Work on Carneades is a research vehicle for studying argumentation from
a more formal, computational perspective than is typical in the field of informal logic,
and for developing prototypes of tools designed to be useful for supporting real-world
argumentation in practice.

We began this project by doing a use-case analysis of common argumentation tasks, as
illustrated in Figure 2. The logical layer, at the bottom of the diagram, covers the
construction of arguments from data, information, models and knowledge. We intend
the sources of arguments to be very broad, ranging from sensory data, witness testimony
and others kinds of evidence, across arguments from the interpretation of natural
language texts, up to purely formal derivations of arguments from propositions
expressed in some formal language, such as predicate calculus. We view argumentation
schemes [35] not only as a useful tool for reconstructing and evaluating past arguments
in natural language texts, but also as templates helping to guide users as they construct,
‘invent’ or generate their own arguments to put forward in ongoing dialogues [13].

1http://carneades.berlios.de
QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 11 of 36

Figure 2: Argumentation Use Cases

The dialectical layer, in the middle of the diagram, covers tasks relevant for comparing
and aggregating potentially conflicting or competing arguments, put forward by
opposing parties in argumentation dialogues, such as legal procedures before courts.
Procedural rules, often called ‘protocols’, regulate the allocation the burden of proof
among the parties, the assignment of proof standards to issues, resource limits, such as
due dates for replying or limiting the number of turns which may be taken, and criteria
for terminating the process, among other matters.

Finally, the rhetorical level, at the top of the diagram, consists of tasks for participating
effectively in argumentation dialogues, taking into consideration the knowledge,
experience, temperament, values, preferences and other characteristics of audiences, in
particular one’s opponent in a dispute. However, rhetoric is not only concerned with
methods for taking advantage of an opponent to win a dispute. It is also about
expressing arguments in clear ways which promote understanding, given the needs of
the audience. We include at this level techniques for visualizing sets of interrelated
arguments as argument graphs or maps, as a particular class of methods for presenting
arguments in ways which promote understanding.

Notice that the application scenarios which interest us, and which we want to support
with software tools, are centered around dialogues, typically with two or more parties,
in which claims are made and competing arguments are put forward to support or attack
these claims. Following Walton, we recognize that there are many kinds of dialogues,
with different purposes and subject to different protocols [36].

We begin in the middle, dialectical layer of Figure 2, because it is central to our work,
and not just in the diagram. Since the main task of the bottom, logical, layer, is to
construct arguments, and the main task of the top, rhetorical, layer is to present
arguments, we first need to define what we mean by arguments and how they are
evaluated.

Informally, an argument links a set of statements, the premises, to another statement, the
conclusion. The premises may be labelled with additional information, about their role
in the argument. Aristotle’s theory of syllogism, for example, distinguished major
premises from minor premises. The basic idea is that the premises provide some kind of
support for the conclusion. If the premises are accepted, then the argument, if it is a
good one, lends some weight to the conclusion. Unlike instances of valid inference rules
of classical logic, the conclusion of an argument need not be necessarily true if the
premises are true. Moreover, some of the premises of an argument may be implicit. An
argument with implicit premises is called an enthymeme [37].

We developed the mathematical model of argument which serves as the foundation for
the Carneades software tools at the dialectical level in a series of papers [12,14,15,17].
Let us focus here on the later, more mature papers. In [15] we presented a formal,
mathematical model of argument structure and evaluation which applied proof standards
to determine the acceptability of statements on an issue-by-issue basis. The model uses
different types of premises (ordinary premises, assumptions and exceptions) and
information about the dialectical status of statements (stated, questioned, accepted or
rejected) to allow the burden of proof to be allocated to the proponent or the respondent,
as appropriate, for each premise separately. Our approach allows the burden of proof for
a premise to be assigned to a different party than the one who has the burden of proving
the conclusion of the argument, and also to change the burden of proof or applicable
proof standard as the dialogue progresses from stage to stage. Useful for modeling legal
dialogues, the burden of production and burden of persuasion can be handled separately,
with a different responsible party and applicable proof standard for each. Finally,

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 12 of 36

following [33], we showed another way to formally model critical questions of
argumentation schemes as additional premises, using premise types to capture the
varying effect on the burden of proof of different kinds of questions.

In [14], we developed this model further, with the aim of integrating the features of
prior computational models of proof burdens and standards, in particular the model of
[26] into Carneades. The notions of proof standards and burden of proof are relevant
only when argumentation is viewed as a dialogical process for making justified
decisions. During such dialogues, a theory of the domain and proofs showing how
propositions are supported by the theory are collaboratively constructed. The concept of
proof in this context is weaker than it is in mathematics. A proof is a structure which
enables an audience to decide whether a proposition satisfies some proof standard,
where a proof standard is a method for aggregating or accruing arguments. There are a
range of proof standards, from scintilla of evidence to beyond reasonable doubt in the
law, ordered by their strictness. The applicable standards depend on the issue and the
type of dialogue, taking into consideration the risks of making an error. Whereas finding
or constructing a proof can be a hard problem, checking the proof should be an easy
(tractable) problem, since putting the proof into a comprehensible form is part of the
burden and not the responsibility of the audience. Argumentation dialogues progress
through three phases and different proof burdens apply at each phase: The burdens of
claiming and questioning apply in the opening phase; the burden of production and the
tactical burden of proof apply in the argumentation phase; and the burden of persuasion
applies in the closing phase.

The Carneades software, which is implemented in a functional style, enables arguments
and argument graphs to be represented and proof standards to be assigned to statements
in a graph. Argument graphs are immutable and all operations on argument graphs are
non-destructive, as dictated by the functional programming paradigm. Every
modification to an argument graph, such as asserting or deleting an argument, or
changing the proof standard assigned to a statement, returns a new argument graph,
leaving the original unchanged. The acceptability of statements in a graph is computed
and, if necessary, updated at the time the graph is modified. Dependency management
techniques, known from reason maintenance systems [8,9], are used to minimize the
amount of computation needed to update the labels of statements in the graph, as
changes are made. Querying an argument graph, to determine the acceptability of some
statement in the graph, just performs a lookup of the pre-computed label of the
statement, and can be performed in constant time. An XML syntax for encoding and
interchanging Carneades arguments, inspired by Araucaria’s Argument Markup
Language [28], has been developed, as part of the Legal Knowledge Interchange Format
[10]. The Carneades software is able to import and export argument graphs in the LKIF
format.

Argumentation schemes are useful for reconstructing, classifying and evaluating
arguments, after they have been put forward in dialogues, to check whether a scheme
has been applied correctly, identify missing premises and ask appropriate critical
questions. Argumentation schemes are also useful for constructing new arguments to put
forward, by using them as templates, forms or, more generally, procedures for
generating arguments which instantiate the pattern of the scheme. We elaborated the
role of argumentation schemes for generating arguments in a series of papers [13,18,20],
focusing on computational models of argumentation schemes studied in the field of
Artificial Intelligence and Law for legal reasoning, including Argument from Defeasible
Rules, Argument from Ontologies, and Argument from Cases.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 13 of 36

The term “rule” has different meanings in different fields, such as law and computer
science. The common sense, dictionary meaning of rule [1] is “One of a set of explicit
or understood regulations or principles governing conduct within a particular sphere of
activity.” It is this kind of rule that we are interested in modeling for the purpose of
constructing arguments. In the field of artificial intelligence and law, there is now much
agreement about the structure and properties of rules of this type [16,22,25,32]:

1. Rules have properties, such as their date of enactment, jurisdiction and authority.

2. When the antecedent of a rule is satisfied by the facts of a case, the conclusion
of the rule is only presumably true, not necessarily true.

3. Rules are subject to exceptions.

4. Rules can conflict.

5. Some rule conflicts can be resolved using rules about rule priorities, e.g. lex
superior, which gives priority to the rule from the higher authority.

6. Exclusionary rules provide one way to undercut other rules.

7. Rules can be invalid or become invalid. Deleting invalid rules is not an option
when it is necessary to reason retroactively with rules which were valid at
various times over a course of events.

8. Rules do not counterpose. If some conclusion of a rule is not true, the rule does
not sanction any inferences about the truth of its premises.

One consequence of these properties is that rules cannot be modeled adequately as
material implications in predicate logic. Rules need to be reified as terms, not formulas,
so as to allow their properties, e.g. date of enactment, to be expressed and reasoned
about for determining their validity and priority.

In the Carneades software, methods from logic programming have been adapted and
extended to model legal rules and build an inference engine which can construct
arguments from rules. Rules in logic programming are Horn clauses, i.e. formulas of
first-order logic in disjunctive normal form, consisting of exactly one positive literal and
zero or more negative literals. The positive literal is called the ‘head’ of the rule. The
negative literals make up the ‘body’ of the rule. A rule with an empty body is called a
‘fact’. In logic programming these rules are interpreted as material conditionals in first-
order logic and a single inference rule, resolution, is used to derive inferences. Since
there is no way to represent negative facts using Horn clauses, rules do not counterpose
in logic programming, even though they are interpreted as material conditionals and the
resolution inference rule is strong enough to simulate modus tollens. In Carneades, we
do not interpret rules as material conditionals, but as domain-dependent inference rules.
Both the head and body of rules are more general than they are in Horn clauses. The
head of a Carneades rule consists of a set of literals, i.e. both positive and negative
literals. The body of a Carneades rule consists an arbitrary first-order logic formula,
except that quantifiers and biconditionals are not supported. Variables in the body and
head of a rule are interpreted as schema variables. Using de Morgan’s laws, Carneades
compiles rules into clauses in disjunctive normal form. Given an atomic proposition P, a
rule can be used to construct an argument pro or con P if P or ¬P, respectively, can be
unified with a literal in the head of the rule.

The burden of proof for an atomic proposition in the body of a rule can be allocated to
the opponent of the argument constructed using the rule, by declaring the proposition to
be an exception. The syntax of rules has been extended to allow such declarations.
Similarly, a proposition in the body of a rule can be made assumable, without proof,

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 14 of 36

until it has been questioned by the opponent of the argument. These features make it
possible to use Carnedes rules to model a broad range of argumentation schemes, where
exceptions and assumptions are used to model the critical questions of the scheme.
Whether a critical question should be modeled as an exception or an assumption
depends on whether the “shifting burden” or the “backup evidence” theory of critical
questions is more appropriate [15] .

In computer science, an ontology is a representation of concepts and relations among
concepts, typically expressed in some decidable subset of first-order logic, such as
description logic [2]. Such ontologies play an important role in integrating systems, by
providing a formal mechanism for sharing terminology, and also in the context of the
so-called Semantic Web [6] for providing machine-processable meta-data about web
resources and services. There is a World Wide Web standard for modeling ontologies in
XML, called the Web Ontology Language (OWL) [24]. The Carneades software
includes a compiler from OWL ontologies into Carneades rules, based on the
Description Logic Programming (DLP) mapping of description logic axioms into Horn
clause rules [21].

Ontologies and rules may be used together to construct arguments with Carneades.
LKIF uses OWL to define the language of individual, predicate and function symbols,
represented as Uniform Resource Identifiers (URIs), which may be used in rules. URIs
provide a world-wide way to manage symbols, avoiding ambiguity and name clashes.
This enables very large knowledge bases to be constructed, in a distributed and modular
way. LKIF files can import OWL ontologies and, recursively, other LKIF files.

We have been experimenting with methods for visualizing Carneades argument graphs
and designing graphical user interfaces for working with argument graphs. An important
difference between our work and most prior work on argument visualization, with the
exception of [34], is that our diagrams are views onto a mathematical model of
argument graphs and the user interfaces provide ways to modify, control and view the
underlying model. Argument diagramming software for Wigmore [38],
Beardsley/Freeman [5] and Toulmin [31] diagrams, such as Araucaria [28], lack this
mathematical foundation. Essentially, the diagrams are the models in these other
systems, rather than views onto a model.

Our approach gives us much freedom to experiment with different diagramming
methods and user interfaces for manipulating Carneades argument graphs, without
changing the underlying model of argument. In [19], we described a couple of different
approaches, including one which is very close to Wigmore’s style of argument
diagramming.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 15 of 36

4 PROTOTYPE: A TOOL FOR ANALYZING OPEN SOURCE LICENSING ISSUES

In this section we present a prototype of a software tool, built using Carneades, for
helping developers to analyse open source license compatibility issues. We start by
developing a simple ontology of concepts and relations for describing software licenses
and use and derivation relationships between works of software. We include in this
ontology formal models of some popular open source licenses, such as the GPL and
BSD licenses. Next we show how to use the ontology to model relationships between
works of software in a software project. We then show how to model some rules of
copyright law using the Legal Knowledge Interchange Format, focusing on the issue of
what kinds of uses of a work of software produce derivative works. These models are
then used to construct, evaluate and visualize arguments about whether or not the
project may publish its software using a particular open source license, that is whether a
preferred license is compatible with the licenses of the software used by the project.
When constructing arguments we illustrate how abduction can be used to focus the
search for issues or goals to work on which are helpful for proving, or disproving,
depending on one's standpoint and interests, that the license is compatible.

4.1 Ontology for Open Source Licenses

Ontologies in computer science are an advanced kind of data model. Carneades uses the
Web Ontology Language (OWL), a World Wide Web standard [24], for representing and
interchanging ontologies. OWL which is well supported by various tools, including the
open source Protege editor [3].2 Figure 3 shows a screen shot of the Protege editor
being used to view the classes of the ontology we have developed for open source
licenses.

The top-level classes, i.e. subclasses of the root Thing class, are:

2http://protege.stanford.edu/
QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 16 of 36

Figure 3: Protege Ontology Editor

• CopyrightLicense. Individual licenses, with which a particular legal entity,
the licensor, grants rights to another legal entity, the licensee.

• CopyrightLicenseTemplate. Open source license templates, such as the
GPL or BSD. A particular copyright license can be an instance of such a
template.

• LegalEntity. Legal persons, such as humans, corporations and associations.

• LicenseTerm. The rights granted by a license and the conditions of the
license, limiting the rights granted.

• Work. Various kinds of intellectual products protected by copyright, including
software.

Two subclasses of CopyrightLicense have been defined:

• OpenSourceLicense. This class in turn has AcademicLicense and
ReciprocalLicense subclasses.

• ProprietaryLicense

The CopyRightLicense class has the following properties:

• grantsRight: CopyrightLicense × Right

• hasCondition: CopyrightLicense × Condition

• hasLicensee: CopyrightLicense × LegalEntity

• hasLicensor: CopyrightLicense × LegalEntity

• instanceOfTemplate:
 CopyrightLicense × CopyrightLicenseTemplate

The CopyrightLicenseTemplate class has a property for license compatibility:

• isCompatibleWith:
 CopyrightLicenseTemplate × CopyrightLicenseTemplate

Notice we have defined this property for license templates, not for individual licenses.
Whether or not two particular licenses are compatible with each other can be derived
from the compatibility of their templates.

The isCompatibleWith property is reflexive (every license template is compatible
with itself), but not symmetric. A template license may be compatible with another
template license without the reverse necessarily being the case. For example, software
which is derived from LGPL software may be licensed using the GPL, but not vice
versa.

Open source copyright license templates, such as the GPL, are modelled in two parts in
this ontology:

 1. By individuals of the CopyrightLicenseTemplate class:

 a) ApacheLicense2.0Template

 b) BSD_Template

 c) EPL_Template

 d) GPL_Template

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 17 of 36

 e) LGPL_Template

 f) MIT_License_Template

 g) MPL_Template

 2. By subclasses of the OpenSourceLicense class:

 a) AcademicLicense

• ApacheLicense2.0

• BSD

• MIT_License

 b) ReciprocalLicense

• EPL

• GPL

• LGPL

• AGPL

• MPL

These two parts of the model of each template license are linked together with an axiom
stating that a license which is an instance of a given template is also an instance of the
appropriate class, and vice versa. For example, the BSD class is linked to the
BSD_Template instance with the following equivalence axiom:

BSD ≡ instanceOfTemplate value BSD_Template

The reason for modelling each template license as both an instance and a class is that, in
order to analyse license compatibility issues, we need some way to reason about
whether a license template is compatible with the licenses of the software entities used
by a project. For this the license templates need to be individuals, not just classes,
because the underlying logic of the Web Ontology Language is description logic, which
is semantically a subset of first-order logic. A second-order logic would be needed for
reasoning about classes directly.

The ontology also provides classes modelling the rights granted and conditions of
licenses and license templates. The following rights and conditions, from the Apache
License 2.0, have been included in the ontology thus far:

 1. LicenseTerm

 a) Right

• MayAcceptWarrantyOrAdditionalLiability

• MayAddYourOwnCopyrightStatementToYourModifications

• MayCopy

• MayDistributeDerivativeWorksInObjectForm

• MayDistributeDerivativeWorksInSourceForm

• MayDistributeOriginalWorkInObjectForm

• MayDistributeOriginalWorkInSourceForm

• MayProduceDerivativeWorks

• MayProvideAdditionalOrDifferentLicenseTermsToYourModifications
QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 18 of 36

• MayPubliclyDisplay

• MayPubliclyPerform

• MaySublicense

 b) Condition

• LimitedLiability

• MustDistributeCopyOfLicense

• MustDistributeCopyOfNoticeText

• MustLicenseDerivativeWorksUnderCompatibleLicense

• MustMarkModifications

• MustOfferSourceCode

• MustRetainNoticesInSourceDistributions

• NoPermissionToUseTrademarks

• ProvidedWithoutWarranties

Superclass axioms are used to express that instances of a particular class of license grant
certain rights and are subject to certain conditions. Let us illustrate this using the
Apache License 2.0. The ApacheLicense2.0 class is defined to be a subclass of
the following Right and Condition classes:

• grantsRight some MayAcceptWarrantyOrAdditionalLiability

• grantsRight some
MayAddYourOwnCopyrightStatementToYourModifications

• grantsRight some MayCopy

• grantsRight some MayDistributeDerivativeWorksInObjectForm

• grantsRight some MayDistributeDerivativeWorksInSourceForm

• grantsRight some MayDistributeOriginalWorkInObjectForm

• grantsRight some MayProduceDerivativeWorks

• grantsRight some MayPubliclyDisplay

• grantsRight some MayPubliclyPerform

• grantsRight some MaySublicense

• hasCondition some LimitedLiability

• hasCondition some MustDistributeCopyOfLicense

• hasCondition some MustDistributeCopyOfNoticeText

• hasCondition some MustMarkModifications

• hasCondition some MustOfferSourceCode

• hasCondition some MustRetainNoticesInSourceDistributions

• hasCondition some NoPermissionToUseTrademarks

• hasCondition some ProvidedWithoutWarranties

Any license which is an instance of the Apache License 2.0 template entails these rights
and conditions. More formally, if an individual is a member or the class

instanceOfTemplate value ApacheLicense2.0Template

then it is, because of the equivalence axiom

ApacheLicense2.0 ≡ instanceOfTemplate value ApacheLicense2.0_Template

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 19 of 36

also a subclass of the Right and Condition classes of which the
ApacheLicense2.0 is a subclass.

A license which has all of the rights and conditions of the Apache License 2.0, however,
is not necessarily an instance of the ApacheLicense2.0 class. For this to be the
case it must also be an instance of the Apache License 2.0 template. That is, it must
express these license terms using exactly the same language as the Apache License 2.0
template.

That said, this way of modelling license terms in a uniform way, across templates, does
make it possible to use an OWL reasoner to automatically classify license templates by
their terms and to find license templates with preferred or selected terms. For example,
suppose you are interested in academic licenses which grant you the right to make
copies. To find such licenses, you can define a class in Protege, let's call it
PreferredLicense, which is equivalent to:

AcademicLicense and grantsRight some MayCopy

Figure 4 shows a screenshot of Protege showing how this is done.

Protege can then use an OWL reasoner, such as Pellet3 or Fact++4 to find licenses which
satisfy these conditions. The result is shown in Figure 5. In this example, only the
ApacheLicense2.0 class was found, because the terms and conditions of other licenses
have yet to be modelled in the ontology.

3http://clarkparsia.com/pellet
4http://owl.man.ac.uk/factplusplus/

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 20 of 36

Figure 4: Definition of Preferred License

4.2 Ontology for Software Systems

Next we present the classes and properties of the ontology designed for modelling
relationships between software used in a project. The main class, Work, models all
works protectable by copyright. The SoftwareEntity subclass of Work is intended
to cover all kinds of software artefacts, including not only source and object code, but
also more abstract entities such as APIs and specifications. Currently the ontology
includes the following subclasses of SoftwareEntity, in alphabetical order:

• ApplicationServer

• ObjectCode

• OperatingSystem

• Program

◦ RichInternetApplication

• SoftwareLibrary

• SoftwareService

• SourceCode

• Specification

◦ API

◦ AbstractMachine

◦ ProgrammingLanguage

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 21 of 36

Figure 5: Inferred Preferred Licenses

These classes are not intended to be complete, at least not in this prototype, but have
been included as needed to model the software entities used in the example project.

Keep in mind that classes in OWL need not be disjunct. Thus, without further axioms
in the ontology, a particular software entity can be, for example, be an instance of both
the Program and ObjectCode classes.

The main property of software entities of interest for license compatibility issues is the
isDerivedFrom property, expressing that one entity has been derived from another.
This is a legal issue which will depend on the jurisdiction and the interpretation of the
governing law by the courts. The ontology includes properties for representing various
ways that software can use other software. These properties are not from the domain of
copyright law, but rather from the domain of software engineering.

• uses: Work × Work

◦ compiledBy: SoftwareEntity × SoftwareEntity

◦ implementedIn: SoftwareEntity × ProgrammingLanguage

◦ implements: SoftwareEntity × Specification

◦ linksTo: SoftwareEntity × SoftwareLibrary

▪ linksDynamicallyTo:
SoftwareEntity × SoftwareEntity

▪ linksStaticallyTo:
SoftwareEntity × SoftwareEntity

◦ modificationOf: Work × Work

◦ runsOnOperatingSystem:
SoftwareEntity × OperatingSystem

◦ servedBy: Work × SoftwareEntity

◦ usesService: SoftwareEntity × SoftwareService

◦ usesSpecification: SoftwareEntity × Specification

In legal terms, they provide the means to represent the material facts of a case. The
legal question is whether a particular use of software, such as linking, is sufficient to
create a derivative work. In legal jargon, the question is whether a material fact, linking,
can be subsumed under a legal concept. Or, more formally, using the properties of the
ontology, whether linksTo is subsumed by, i.e. a subproperty of, isDerivedFrom.
None of these use relations has been defined in the ontology as a subproperty of
isDerivedFrom, because these legal issues have not been resolved, at least not
universally, in all jurisdictions, and we want to leave room to argue about these issues.
A possible exception might be the modificationOf property, which is used to
represent software created by textually modifying the source code of existing software.
It may be that there is universal agreement, in all jurisdictions, that such modifications
create derivate works, with not exceptions. If this is beyond doubt, the
modificationsOf property could be defined as a subproperty of the
isDerivedFrom property in the ontology.

An interesting legal issue may be whether the use or isDerivedFrom properties are
transitive. If a software entity X uses Y and Y uses Z, does X also use Z? Similarly, if
X is derived from Y and Y from Z, is X also derived from Z? Our intuitions tell us that

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 22 of 36

the use relation, in the domain of software engineering, is transitive but that the
isDerivedFrom property, which is legal relation, may not be. But since we are not
sure, we have not asserted in the ontology that either property is transitive.

In addition to these use relations, the ontology includes properties for representing the
license templates which are compatible with the licenses of any works from which it is
derived, and for recording the licenses which have been issued for the work:

• mayUseLicenseTemplate: Work × CopyrightLicenseTemplate

• hasLicense: Work × CopyrightLicense

4.3 Example Model of a Software Project

Figure 6 shows a graph visualizing relationships between software entities of a
hypothetical project, roughly based on the Clojure port of Carneades currently being
developed. The actual system may be different, since this is work in progress and
subject to change.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 23 of 36

The diagram visualizes individuals in an OWL model of the project, using the ontology
presented above, and was creating using a program for visualizing OWL and RDF files
called RDF-Gravity.5

For our purposes here, it is not necessary to explain all of the software entities and
relationships shown in the figure. Let us focus on the Carneades engine,
(CarneadesEngine), shown in the middle of the figure. The Carneades engine is a
software library implemented in the Clojure programming language.6 It is represented
in the model as:

CarneadesEngine

type: SoftwareLibrary

implementedIn: Clojure

compiledBy: ClojureCompiler

linksStaticallyTo: ClojureLib

linksStaticallyTo: ClojureContrib

linksStaticallyTo: cljSandbox

linksStaticallyTo: JgraphX

linksStaticallyTo: OWL_API

linksStaticallyTo: Pellet

usesSpecification: JVM

5http://semweb.salzburgresearch.at/apps/rdf-gravity/
6http://clojure.org QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 24 of 36

Figure 6: Relationships Between Software Entities of the Example Project

usesSpecification: OSGI

Since the example is designed to illustrate the process of using the prototype to help
developers select compatible open source licenses, the CarneadesEngine does not
yet have a license in the model.

The Clojure compiler creates byte code for the Java Virtual Machine (JVM):

Clojure

type: ProgrammingLanguage

hasLicense: ClojureLicense

ClojureLib

type: SoftwareLibrary

hasLicense: ClojureLicense

ClojureCompiler

type: Program

hasLicense: ClojureLicense

implements: Clojure

ClojureLicense

type: EPL

The Clojure compiler is licensed using the EPL. Notice that, in the model, the Clojure
individual does not have either the EPL, which is a class, or the EPL_Template
instance as its license directly, but rather has its own, unique license, which we've
named ClojureLicense. This license is however a member of the EPL class,
which, as you may recall, is equivalent to the class:

instanceOfTemplate value EPL_Template

This way of modeling licenses allows each instance of a template license to have its
own licensor and licensee, which is necessary since the licensor of software licensed
using a template license is the copyright owner of the software and not the owner of the
template license, such as the Eclipse Foundation, the owner and maintainer of the EPL
template license.

Other libraries used by the Carneades engine include CLJ Sandbox, JgraphX, Pellet, and
the reference implementation of the OWL API:

cljSandbox

type: SoftwareLibrary

hasLicense: cljSandboxLicense

cljSandboxLicense:

type: EPL

JgraphX

type: SoftwareLibrary

hasLicense: JgraphXLicense

JgraphXLicense

type: BSD

Pellet

type: SoftwareLibrary

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 25 of 36

hasLicense: PelletLicense

PelletLicense

type: AGPL

OWL_API_ReferenceImplementation

type: Software Library

hasLicense: OWL_API_ReferenceImplementationLicense

OWL_API_ReferenceImplementationLicense

type: LGPL

The EPL and AGPL are reciprocal licenses, so central licensing questions will be
whether the Carneades engine must be licensed using either the EPL or AGPL as well,
and if one of these licenses is chosen whether the libraries which use the other license
still may be used. Legally, this will depend on whether the linking of software to a
library causes the software to be a derivative work of the library. We return to this
question in the next section, after showing how alternative interpretations of copyright
law can be modelled using LKIF rules.

4.4 Rules

The Web Ontology Language, OWL, is based on description logic, which is
semantically a decidable subset of first-order logic. This means that the inferences of an
OWL reasoner are strict: if the axioms of an OWL ontology are true in some domain,
then all of the inferences made by a (correctly implemented) OWL reasoner are
necessarily also true, without exception. While OWL is very powerful and useful, it is
not sufficient for modelling and reasoning about legal norms, such as the rules of
copyright law, in a maintainable and transparent way. Legal rules are typically
organized as general rules subject to exceptions. Arguments made by applying legal
rules are defeasible. Their conclusions can be defeated with better counterarguments.
Various legal rules may conflict with each other. Theses conflicts are resolved using
legal principals about priority relationships between rules, such as the principal of lex
superior, which gives rules from a higher authority, such as federal law, priority over
rules from a lower authority, such as state law. Even when it is possible to reconstruct
the meaning of a set of legal rules in OWL, doing so sacrifices maintainability, as rules
change, as well as transparency and understandability, because it is difficult to show that
the reconstruction is correct and difficult to show how inferences are sanctioned by the
authoritative legal sources.

Thus we model legal rules using a defeasible rule language which has been developed
especially for this purpose, as part of the Legal Knowledge Interchange Format (LKIF),
and use OWL for more limited purposes: 1) to declare the language of unary and binary
predicate symbols (classes and properties, in OWL terminology) of the application
domain; and 2) to define relationships between these predicates, using OWL axioms,
which are judged to be universally true and beyond dispute in the domain. It is a matter
of judgement and experience where to draw the line between the parts of the domain
which are modelled in the ontology, using OWL, and which are modelled using the
LKIF rule language.

Here we illustrate the LKIF rule language by modelling some interpretations of the rules
of copyright law, as it pertains to open source licensing issues. Since opinions differ

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 26 of 36

about how to interpret copyright law in the context of open source licensing issues, for
example about whether or not linking to a software library creates a derivative work, an
important feature of our approach is the ability to include alternative interpretations in a
single model, and to construct and compare competing arguments from these alternative
formulations of the rules when analysing licensing issues of a software project.

We begin with the general rule that the copyright owner of software may license the
software using any license template he chooses.

<rule id="DefaultLicenseRule">
 <head>
 <s pred="&oss;mayUseLicenseTemplate">
 <v>SE</v> may be licensed using the <v>T</v> template
 </s>
 </head>
</rule>

Since LKIF is an XML schema, rules are represented in XML. This particular rule has a
head (conclusion) but no body (conditions). Even though the rule has no conditions,
inferences made using this rule are not necessarily or universally true, but remain
defeasible. We will make use of this feature to express exceptions to this general rule
below.

The rule has been assigned an identifier, DefaultLicenseRule, which may be used
to formulate statements about the rule. That is, rules are objects of the domain model,
and may be reasoned about just like other objects. This feature is called “reification” in
the field of knowledge representation.

The predicate symbol of the statement (proposition) in the head of the rule is specified
using the pred attribute. Its value can be the name of a class or property in a OWL
ontology, as in this example. The &oss; entity reference refers the ontology, using its
URI. The entity is defined at the top of the LKIF file, as follows:

<!DOCTYPE rb [
 <!ENTITY oss "http://carneades.berlios.de/oss-licenses#">
]>

Declaring predicate symbols in ontologies makes it possible to divide up the model of a
complex domain theory into modules, with a separate LKIF file for each module. OWL
provides a way for ontologies to import the classes and properties of other OWL files,
recursively. Similarly, LKIF provides a way to import both LKIF and OWL files. OWL
makes it easy to manage predicate symbols across the boundaries of modules and to
make sure that symbols in different modules refer to the same class or property when
this is desired.

The XML syntax for rules in LKIF is rather verbose and not especially readable.
Fortunately, it is easy to write programs for converting XML into more readable
formats. Moreover, XML structure editors exist, such as Oxygen7, which use style
sheets to enable authors to edit XML documents directly in a more readable form.
Using this feature, the above rule can be displayed in the editor as follows:

rule DefaultLicenseRule
 SE may be licensed using the T template

In this format, variables are underlined. The predicate symbol from the OWL ontology
is not shown, but can be viewed and edited in a separate properties panel when the

7http://www.oxygenxml.com/
QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 27 of 36

cursor is placed within the text of the statement. We will use this more readable format
for displaying LKIF rules in the remainder of this report.

Next let us formulate an exception to the general rule that any license template may be
used for reciprocal licenses:

rule ReciprocityRule
 not: SE1 may be licensed using the T1 template
 given
 SE1 uses SE2
 SE2 is licensed under L
 L is reciprocal
 SE1 is derived from SE2
 L is an instance of the T2 template license
 unless: T1 is compatible with T2

This reciprocity rule states that a software entity, SE1, may not be licensed using a
template license, T1, if the software is derived from another software entity, SE2,
which is licensed using a reciprocal license, L, unless L is an instance of a license
template, T2, which is compatible with T1.

Notice that the conclusion of the rule is negated and that the last condition of the rule
expresses an exception (“unless …”).

The first condition of the rule, SE1 uses SE2, serves a heuristic purpose. It provides
control information enabling fully instantiated arguments to be constructed when this
rule is applied, without having to first search for arguments for the conditions of the
rule. Given a model in OWL of the software entities of a project and their various use
relationships, an OWL reasoner can be used to derive all use relationships entailed by
the model. That is, the reasoner can construct a set of propositions instantiating the form
SE1 uses SE2, where each proposition in the set is logically entailed by the model.
An inference engine for LKIF rules, such as Carneades, can then iterate over these
propositions to apply this rule to create fully instantiated arguments for each member of
the set.

We cannot use the isDerivedFrom property directly for this heuristic purpose, since
it is an open legal issue which kind of use relationships result in derivative works and
thus this property is not defined not in the ontology. Moreover, different jurisdictions
may interpret the concept of derivate works differently and we have aimed to construct
the ontology in a way which is independent of the law of specific jurisdictions.

Let us end this brief overview with rules modelling two conflicting views about whether
or not linking creates a derivative work.8 According to the lawyers of the Free Software
Foundation, linking does create a derivate work. Lawrence Rosen, a legal expert on
open source licensing issues [29] takes the opposing point of view and argues that
linking per se is not sufficient to create derivate works.

rule FSFTheoryOfLinking
 SE1 is derived from SE2
 given
 SE2 is a software library
 SE1 is linked to SE2
 The FSF theory of linking is valid

rule RosenTheoryOfLinking
 not: SE1 is derived from SE2

8http://en.wikipedia.org/wiki/GNU_General_Public_License#Linking_and_derived_works
QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 28 of 36

 given
 SE2 is a software library
 SE1 is linked to SE2
 The Rosen theory of linking is valid

The last condition of each of these rules, requires that the interpretation of copyright law
represented by the rule is legally valid. The valid predicate is “built-in” to Carneades.
It need not be imported from an ontology. In these rules, the validity condition is
formulated as an ordinary condition, not an assumption or exception, and thus require
whoever uses one of these rules to construct an argument to prove that the particular
theory is legally valid. Had these conditions been modelled as exceptions, the other side
would have had the burden of proving that the theory is not valid in order to undercut
arguments constructed with the rules.

4.5 Arguments

Now let's use the theory of open source licensing issues we have constructed with OWL
and LKIF rules to analyse a licensing issue of the hypothetical software project, as
presented in Section 4.3. Recall that in the example, the Carneades engine is
implemented using the Clojure programming language and links to some Clojure
libraries, as well the JgraphX, Pellet and OWL API libraries. The Clojure compiler and
libraries are licensed using the EPL. The JgraphX library uses the BSD license. The
Pellet library uses the AGPL variant of the GPL. And, finally, the OWL API reference
implementation uses the LGPL. All of these license templates, except BSD, are
reciprocal. See Figure 6 for an diagram showing relationships between the Carneades
engine, these libraries and their licenses.

Suppose we want to analyse whether the Carneades engine may be licensed using the
Eclipse Public License (EPL). Using the Carneades editor, an interactive argument
mapping (diagramming) tool integrated with an assistant which helps users to construct
arguments from ontologies and rules, we can create a argument graph about this issue,
as shown in Figure 7.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 29 of 36

Carneades argument maps are visualizations of argument graphs. An argument graph is
a bipartite graph, with statement and argument nodes. Statement nodes are displayed
using boxes; argument nodes with circles. The propositional content of a statement node
is shown as text inside the box, in either natural language or, as in this example, in some
formal language. Here statements are displayed as RDF triples of the form subject
predicate object. For example, the main issue, about whether the Carneades engine may
use the EPL license template, is shown in the box at the far left of the map, with the
text:

CarneadesEngine mayUseLicenseTemplate EPL_Template

The map includes two arguments about this issue, a pro argument and a con argument.
Pro arguments are visualized by circles containing a large plus sign; con arguments by
circles containing a minus sign. In the example, the pro argument was constructed from
the DefaultLicenseRule. Recall that this general rule states that, by default, a
software entity may be licensed using any template license, with no limitations on the
copyright owner. Since this rule has no conditions, the argument which has been
constructed using this rule has no premises. Arguments are applicable when all of their
premises hold. Arguments with no premises, such as this one, are always applicable. In
the figure, applicable arguments and acceptable statements are visualized by filling their
circle or box, respectively, with a gray background.

Arguments are linked to their premises and conclusion uses various kinds of edges
between the statement and arguments nodes in the diagram. The link from the argument
to its conclusion is displayed using an edge with an arrowhead pointing to the
conclusion. The links from the argument to its premises do not have arrowheads. Solid
lines denote ordinary premises; dotted lines denote exceptions. Negated premises, of
which there is no example in the figure, are visualized by adding a crossbar to the
premise link. In the figure, we have labelled the link with the arrowhead from the
argument to its conclusion with the name of the rule which has been used to construct
the argument.

Argument graphs are not restricted to trees. Several arguments may have premises with
the same propositional content, i.e. about the same statement. There is an example in
Figure 7: The statement

PelletLicense instanceOfTemplate AGPL_Template

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 30 of 36

Figure 7: Example Argument Graph

is a premise of two arguments, the con argument constructed using the reciprocity rule,
on the left side of the figure, as well as the pro argument about the Pellet license being a
AGPL license, to the right. We have duplicated the statement node to simplify the layout
of the diagram, but conceptually it is important to keep in mind that these are the same,
identical, statements.

Ten con arguments can be constructed using the reciprocity rule in the example project,
one for each of the software entities used by the project. This does not mean that all of
these arguments are applicable, i.e. that all of the premises of each of these arguments
hold. It only means that these are arguments that one might want to consider. Many
more arguments could also be constructed using the reciprocity rule, for example by
imagining that the software entities used other license templates. Good heuristics are
needed to control the search for arguments. Here we are using the factual assertions in
the ontology to focus on only those arguments whose material conditions are assumed
to be satisfied.

Figure 7, due to legibility and space restrictions, only shows one of these 10 con
arguments, the one constructed by applying the reciprocity rule to the Pellet library.
This con argument is not (yet) applicable, and thus shown with a white background in
the figure, because it is unresolved whether the Carneades engine is derived from the
Pellet library. (The last premise of the con argument, about whether the EPL is
compatible with the AGPL, is an exception, and thus need not hold for the con argument
to go through.)

As can be seen in the figure, the FSF and Rosen theories about whether or not linking
creates a derivative work have both been applied, to construct pro and con arguments
about whether or not the Carneades engine is derived from Pellet. The facts are
undisputed. Pellet is a software library and the Carneades engine, in this hypothetical
example, does link to Pellet. The open question is whether either of these two legal
theories is valid. If the FSF theory of linking is correct, then the Carneades engine is
derived from Pellet and the con argument from reciprocity would be applicable. This
con argument would then rebut the argument from the default license rule, with the
result that it would no longer be acceptable to use the EPL license.

However further arguments on the other side of this issue could lead us back to the
conclusion that the EPL is acceptable. For example, in principal it could be that both
the Rosen and the FSF theories of linking are correct, but in different jurisdictions. If
the Rosen rule is valid in a higher jurisdiction, then the legal principal of lex superior
could be used to give it higher priority. In Carneades, this can be done by the giving the
argument from the Rosen theory greater weight.

When analysing a case and constructing arguments, it is important to focus your efforts
on relevant issues and to choose goals to work on which are promising, given your
interests. In a recent conference paper [4], Stefan Ballnat and I presented a model of
abduction for Carneades and show how it can be used to support goal selection.
Returning to our example of Figure 7, if someone is interested in rebutting the
conclusion that the EPL may be used, which is currently acceptable, given the
arguments, what issues should he or she focus on next? The model of abduction for
Carneades computes minimal sets of statements which, if true (accepted), would make a
given statement in (acceptable or accepted) or out (not in). Since the aim is to rebut the
conclusion that the EPL may be used, this conclusion needs to be made out. The
minimal sets of statements which, if proved, would achieve this goal are:

• {FSFTheoryOfLinking is valid}, and

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 31 of 36

• {¬CarneadesEngine mayUseLicenseTemplate EPL_Template}

The second of these positions simply assumes, without proof, that which needs to
proven. (More precisely, it assumes the negation of the statement to be disproven.)
Thus this position is uninteresting for our purposes. This leaves the first position, which
suggests that, to disprove that the EPL may be used, one should focus on trying to prove
the validity of the FSF theory of linking.

To complete the analysis of whether the software developed in the example project may
licensed using the EPL, we would need to repeat the procedure illustrated above for
each of the other software entities used by the project. If we wanted to evaluate other
open source licenses, we would need to do this for each license of interest. Again, the
process of using Carneades to evaluate licensing issues is not fully automatic.
Carneades is designed as an interactive tool for helping users to construct and evaluate
arguments. Here, we have illustrated the main features of this tool by showing how it
could be used to help analyse some open source licensing issues.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 32 of 36

5 CONCLUSION

Building on Semantic Web technology and our prior theoretical and practical work on
the Carneades argumentation system, we have developed a proof-of-concept, prototype
system for helping developers to construct, explore and compare legal theories when
analysing open source licensing issues in particular cases. The prototype takes into
consideration an analysis of requirements. This analysis concludes that the resolution of
open source licensing issues is an argumentative process in which alternative theories of
copyright law concepts, such as the concept of a derivative work, together with the facts
of particular cases, are constructed and critically evaluated compared. An ontology of
open source licences has been developed, using the Web Ontology Language (OWL)
and this ontology has been used to model several popular open source licenses,
including the Apache 2.0, BSD and MIT academic licenses, as well as the MPL, EPL
and GNU GPL reciprocal licenses. Several variants of the GNU GPL are included in the
model, including the GNU AGPL and the GNU LGPL. In addition we have developed
an ontology for describing software projects, including various relationships between
software entities used by the project, at the level of abstraction required for analysing
licensing issues. A couple of alternative theories of the legal concept of a derivative
work have been modelled using defeasible inference rules in the Legal Knowledge
Interchange Format (LKIF). Finally, these theories are used to construct, evaluate and
visualize pro and con arguments about whether or not a particular open source license
may be used by an example software project.

In the future we hope to find an opportunity to develop the ontology and rulebase
further and to validate in pilot applications the suitability of Carneades as a tool for
analysing open source license issues. If the validation process is successful, we plan to
take steps to publish this application of Carneades as a open source tool for the open
source software community.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 33 of 36

6 ACKNOWLEDGEMENTS

I would like to acknowledge the prior work of my former colleague Markus Schmidt on
modelling open source licenses using the Web Ontology Language [30], my
colleagues working with me at Fraunhofer FOKUS in the Carneades project, in
particular Stefan Ballnat and Pierre Allix, the students of my Legal Knowledge-Based
Systems project at the University of Potsdam in the winter semester of 2009/2010, who
developed their own prototype application for the same problem, as well as Douglas
Walton for his inspiration and support and for the opportunity to collaborate with him
on computational models of argument over the last few years.

REFERENCES

1. New Oxford American Dictionary. Oxford University Press, 2001.

2. The Description Logic Handbook — Theory, Implementation and Applications.
Cambridge University Press, 2003.

3. The Protege Ontology Editor and Knowledge Acquisition System. 2007.

4. Ballnat, S. and Gordon, T.F. Goal Selection in Argumentation Processes — A Formal
Model of Abduction in Argument Evaluation Structures. Proceedings of the Third
International Conference on Computational Models of Argument (COMMA), IOS Press
(2010), 51-62.

5. Beardsley, M.C. Practical Logic. Prentice Hall, New York, 1950.

6. Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific American
284, 5 (2001), 34-43.

7. Bing, J. Uncertainty, Decisions and Information Systems. In C. Ciampi, Artificial
Intelligence and Legal Information Systems. North-Holland, 1982.

8. De Kleer, J. A general labeling algorithm for assumption-based truth maintenance.
Proceedings of the 7th national conference on artificial intelligence, Morgan
Kaufmanns Publishers (1988), 188-192.

9. Doyle, J. A Truth Maintenance System. Artificial Intelligence 12, (1979), 231-272.

10. ESTRELLA Project. The Legal Knowledge Interchange Format (LKIF). 2008.

11. Engisch, K. Logische Studien zur Gesetzesanwendung. C. Winter, 1960.

12. Gordon, T.F. and Walton, D. The Carneades Argumentation Framework – Using
Presumptions and Exceptions to Model Critical Questions. Proceedings of the 6th ECAI
Workshop on Computational Models of Natural Argument (CMNA 6), (2006).

13. Gordon, T.F. and Walton, D. Legal Reasoning with Argumentation Schemes. 12th
International Conference on Artificial Intelligence and Law (ICAIL 2009), ACM Press
(2009), 137-146.

14. Gordon, T.F. and Walton, D. Proof Burdens and Standards. In I. Rahwan and G.
Simari, Argumentation in Artificial Intelligence. Springer-Verlag, Berlin, Germany,
2009, 239-260.

15. Gordon, T.F., Prakken, H., and Walton, D. The Carneades Model of Argument and
Burden of Proof. Artificial Intelligence 171, 10-11 (2007), 875-896.

16. Gordon, T.F. The Pleadings Game; An Artificial Intelligence Model of Procedural
Justice. Springer, New York, 1995.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 34 of 36

17. Gordon, T.F. A Computational Model of Argument for Legal Reasoning Support
Systems. Argumentation in Artificial Intelligence and Law, Wolf Legal Publishers
(2005), 53-64.

18. Gordon, T.F. Constructing Arguments with a Computational Model of an
Argumentation Scheme for Legal Rules. Proceedings of the Eleventh International
Conference on Artificial Intelligence and Law, (2007), 117-121.

19. Gordon, T.F. Visualizing Carneades Argument Graphs. Law, Probability and Risk 6,
2007, 109-117.

20. Gordon, T.F. Hybrid Reasoning with Argumentation Schemes. Proceedings of the
8th Workshop on Computational Models of Natural Argument (CMNA 08), (2008), 16-
25.

21. Grosof, B.N., Horrocks, I., Volz, R., and Decker, S. Description Logic Programs:
Combining Logic Programs with Description Logics. Proceedings of the Twelth
International World Wide Web Conference (WWW 2003), ACM (2003), 48-57.

22. Hage, J.C. Reasoning with Rules – An Essay on Legal Reasoning and its Underlying
Logic. Kluwer Academic Publishers, Dordrecht, 1997.

23. McCarty, L.T. Some Arguments About Legal Arguments. International Conference
on Artificial Intelligence and Law, (1997), 215-224.

24. McGuinness, D.L. and van Harmelen, F. {OWL Web Ontology Language} Overview.
2004.

25. Prakken, H. and Sartor, G. A Dialectical Model of Assessing Conflicting Argument
in Legal Reasoning. Artificial Intelligence and Law 4, 3-4 (1996), 331-368.

26. Prakken, H. and Sartor, G. A Logical Analysis of Burdens of Proof. In H. Kaptein,
H. Prakken and B. Verheij, Legal Evidence and Proof: Statistics, Stories, Logic. Ashgate
Publishing, 2009, 223-253.

27. Rawls, J. Outline of a Decision Procedure for Ethics. Philosophical Review, (1951),
177-197.

28. Reed, C.A. and Rowe, G.W. Araucaria: Software for Argument Analysis,
Diagramming and Representation. International Journal of AI Tools 13, 4 (2004), 961-
980.

29. Rosen, L.E. Open source licensing: Software freedom and intellectual property law.
Prentice Hall Professional Technical Reference, Upper Saddle River, New Jersey, USA,
2004.

30. Schmidt, M. Anwendung semantischer Technologien für die Modellierung und
Analyse von Lizenzen im Bereich der Open Source Software. 2008.

31. Toulmin, S.E. The Uses of Argument. Cambridge University Press, Cambridge, UK,
1958.

32. Verheij, B. Rules, Reasons, Arguments. Formal Studies of Argumentation and
Defeat. 1996.

33. Verheij, B. Dialectical Argumentation with Argumentation Schemes: An Approach
to Legal Logic. Artificial Intelligence and Law 11, 2-3 (2003), 167-195.

34. Verheij, B. Virtual Arguments. TMC Asser Press, The Hague, 2005.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 35 of 36

35. Walton, D., Reed, C., and Macagno, F. Argumentation Schemes. Cambridge
University Press, 2008.

36. Walton, D. The New Dialectic: Conversational Contexts of Argument. University of
Toronto Press, Toronto; Buffalo, 1998.

37. Walton, D. Fundamentals of Critical Argumentation. Cambridge University Press,
Cambridge, UK, 2006.

38. Wigmore, J.H. A Treatise on the System of Evidence in Trials at Common Law:
Including the Statutes and Judicial Decisions of all Jurisdictions of the United States.
Little, Brown and Company, Boston, Massachusetts, USA, 1908.

QualiPSo • 034763 • A1.D2.1.3 • Version 0.8, dated 4/8/2010 • Page 36 of 36

	1 Introduction
	2 Problem Statement: License Issues and Argumentation
	3 System Design: Overview of the Carneades Argumentation System
	4 Prototype: A Tool for Analyzing Open Source Licensing Issues
	4.1 Ontology for Open Source Licenses
	4.2 Ontology for Software Systems
	4.3 Example Model of a Software Project
	4.4 Rules
	4.5 Arguments

	5 Conclusion
	6 Acknowledgements

