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Abstract

Carneades is both a mathematical model of argumentation and a soft-
ware toolbox providing support for argument evaluation, construction and
visualization. Here we present an overview of the current version of the
Carneades toolbox, explaining how the tools can be used to support ar-
gumentation tasks and providing some technical information about how
they have been implemented.

1 Introduction

Carneades is a set of Open Source software tools for supporting a range of argu-
mentation tasks, based on a mathematical model of Doug Walton’s philosophy
of argumentation and developed in collaboration with him over the course of
several years, beginning in 2006.1 Work on Carneades is a research vehicle for
studying argumentation from a more formal, computational perspective than
is typical in the field of informal logic, and for developing prototypes of tools
designed to be useful for supporting real-world argumentation in practice. Thus
there have been several versions of Carneades, as we experiment with different
formal models of various argumentation tasks and with different ideas for tools
which might be useful for helping people to argue more effectively. Carneades
is work in progress. There is still much to do and feedback from an empirical
evaluation of Carneades tools may lead to further changes in the system.

We began this project by doing a use-case analysis of common argumen-
tation tasks, as illustrated in Figure 1.2 This is another three-layered model
of argumentation tasks (Brewka and Gordon, 1994; Prakken, 1995), where the
three layers are inspired by Aristotle’s distinctions between logic, dialectic and
rhetoric. We do not claim, however, that our conceptualization of these three

1http://carneades.berlios.de
2See also (Macintosh et al., 2009), which applies this use-case diagram in a survey of

argumentation software, to classify avaiable tools.
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Figure 1: Argumentation Uses Cases

layers is perfectly faithful to Aristotle’s views on these topics. Indeed, we an-
ticipate that there may be some disagreement about how the tasks have been
distributed among the layers in this diagram. For us, the important thing is not
so much whether a particular task is considered logical, dialectical or rhetorical,
as the simple recognition of the task as being important for the performance of
some role in argumentation dialogues, and to try to capture which tasks depend
on the results of which other tasks.

The logical layer, at the bottom of the diagram, covers the constructon
of arguments from data, information, models and knowledge. We intend the
sources of arguments to be very broad, ranging from sensory data, witness tes-
timony and others kinds of evidence, across arguments from the interpretation
of natural language texts, up to purely formal derivations of arguments from
propositions expressed in some formal language, such as predicate calculus. We
view argumentation schemes (Walton et al., 2008) not only as a useful tool for
reconstructing and evaluating past arguments in natural language texts, but
also as templates helping to guide users as they construct, ‘invent’ or generate
their own arguments to put forward in ongoing dialogues (Gordon and Walton,
2009b).

The dialectical layer, in the middle of the diagram, covers tasks relevant for
comparing and aggregating potentially conflicting or competing arguments, put
forward by opposing parties in argumentation dialogues, such as legal procedures
before courts. Procedural rules, often called ‘protocols’, regulate the allocation
the burden of proof among the parties, the assignment of proof standards to
issues, resource limits, such as due dates for replying or limiting the number
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of turns which may be taken, and criteria for terminating the process, among
other matters.

Finally, the rhetorical level, at the top of the diagram, consists of tasks for
participating effectively in argumentation dialogues, taking into consideration
the knowledge, experience, temperament, values, preferences and other char-
acteristics of audiences, in particular one’s opponent in a dispute. However,
rhetoric is not only concerned with methods for taking advantage of an op-
ponent to win a dispute. It is also about expressing arguments in clear ways
which promote understanding, given the needs of the audience. We include at
this level techniques for visualizing sets of interrelated arguments, i.e. argument
graphs, as a particular class of methods for presenting arguments in ways which
promote understanding.

Notice that the application scenarios which interest us, and which we want
to support with software tools, are centered around dialogues, typically with two
or more parties, in which claims are made and competing arguments are put
forward to support or attack these claims. Following Walton, we recognize that
there are many kinds of dialogues, with different purposes and subject to differ-
ent protocols (Walton, 1998). This focus needs to be contrasted with the main-
stream, relational conception of argument in the field of computational models
of argument, typified by Argumentation Frameworks (Dung, 1995), which views
argumentation not as a dialogical process for making justified decisions which
resolve disputed claims in the face of resource limitations, but as a method for
inferring consequences from an inconsistent set of propositions, by maximiz-
ing in some way, depending on the semantics of the particular approach, the
number of propositions in the set which can be assumed to be true simultane-
ously. To see the difference between these conceptions of argument, notice that
a proposition which has not been attacked is acceptable in this relational model
of argument, in all common semantics, whereas in most dialogues, in particu-
lar persuasion dialogues, a proposition which has not been supported by some
argument is typically not acceptable, since most protocols place the burden of
proof on the party which made the claim.

In the rest of this paper we describe the work we have done so far to sup-
port argument evaluation, construction and visualization before concluding and
discussing our plans for future work.

2 Argument Evaluation

We begin in the middle, dialectical layer of Figure 1, because it is central to our
work, and not just in the diagram. Since the main task of the bottom, logical,
layer, is to construct arguments, and the main task of the top, rhetorical, layer
is to present arguments, we first need to define what we mean by arguments
and how they are evaluated.

Informally, an argument links a set of statements, the premises, to another
statement, the conclusion. The premises may be labelled with additional infor-
mation, about their role in the argument. Aristotle’s theory of syllogism, for
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example, distinguished major premises from minor premises. The basic idea
is that the premises provide some kind of support for the conclusion. If the
premises are accepted, then the argument, if it is a good one, lends some weight
to the conclusion. Unlike instances of valid inference rules of classical logic, the
conclusion of an argument need not be necessarily true if the premises are true.
Moreover, some of the premises of an argument may be implicit. An argument
with implicit premises is called an enthymeme (Walton, 2006, p. 178).

We developed the mathematical model of argument which serves as the foun-
dation for the Carneades software tools at the dialectical level in a series of
papers (Gordon, 2005; Gordon and Walton, 2006; Gordon et al., 2007; Gordon
and Walton, 2009a). Let us focus here on the later, more mature papers. In
(Gordon et al., 2007) we presented a formal, mathematical model of argument
structure and evaluation which applied proof standards to determine the ac-
ceptability of statements on an issue-by-issue basis. The model uses different
types of premises (ordinary premises, assumptions and exceptions) and infor-
mation about the dialectical status of statements (stated, questioned, accepted
or rejected) to allow the burden of proof to be allocated to the proponent or the
respondent, as appropriate, for each premise separately. Our approach allows
the burden of proof for a premise to be assigned to a different party than the
one who has the burden of proving the conclusion of the argument, and also to
change the burden of proof or applicable proof standard as the dialogue pro-
gresses from stage to stage. Useful for modeling legal dialogues, the burden of
production and burden of persuasion can be handled separately, with a differ-
ent responsible party and applicable proof standard for each. Finally, following
Verheij (2003), we showed another way to formally model critical questions of
argumentation schemes as additional premises, using premise types to capture
the varying effect on the burden of proof of different kinds of questions.

In Gordon and Walton (2009a), we developed this model further, with the
aim of integrating the features of prior computational models of proof bur-
dens and standards, in particular the model of Prakken and Sartor (2009) into
Carneades. The notions of proof standards and burden of proof are relevant
only when argumentation is viewed as a dialogical process for making justified
decisions. During such dialogues, a theory of the domain and proofs showing
how propositions are supported by the theory are collaboratively constructed.
The concept of proof in this context is weaker than it is in mathematics. A
proof is a structure which enables an audience to decide whether a proposi-
tion statisfies some proof standard, where a proof standard is a method for
aggregating or accruing arguments. There are a range of proof standards, from
scintilla of evidence to beyond reasonable doubt in the law, ordered by their
strictness. The applicable standards depend on the issue and the type of dia-
logue, taking into consideration the risks of making an error. Whereas finding
or constructing a proof can be a hard problem, checking the proof should be
an easy (tractable) problem, since putting the proof into a comprehensible form
is part of the burden and not the responsibility of the audience. Argumenta-
tion dialogues progress through three phases and different proof burdens apply
at each phase: The burdens of claiming and questioning apply in the opening
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phase; the burden of production and the tactical burden of proof apply in the
argumentation phase; and the burden of persuasion applies in the closing phase.

The Carneades software, which is implemented in a functional style using
the Scheme programming langauge (Dybvig, 2003), enables arguments and ar-
gument graphs to be represented and proof standards to be assigned to state-
ments in a graph. Argument graphs are immutable and all operations on ar-
gument graphs are non-destructive, as dictated by the functional programming
paradigm. Every modification to an argument graph, such as asserting or delet-
ing an argument, or changing the proof standard assigned to a statement, re-
turns a new argument graph, leaving the original unchanged. The acceptability
of statements in a graph is computed and, if necessary, updated at the time the
graph is modified. Dependency management techniques, known from reason
maintenance systems (Doyle, 1979; De Kleer, 1988), are used to minimize the
amount of computation needed to update the labels of statements in the graph,
as changes are made. Quering an argument graph, to determine the acceptabil-
ity of some statement in the graph, just performs a lookup of the pre-computed
label of the statement, and can be performed in constant time. An XML syntax
for encoding and interchanging Carneades arguments, inspired by Araucaria’s
Argument Markup Language (Reed and Rowe, 2004), has been developed, as
part of the Legal Knowledge Interchange Format (ESTRELLA Project, 2008).
The Carneades software is able to import and export argument graphs in this
LKIF format.

3 Argument Construction

Argumentation schemes are useful for reconstructing, classifying and evaluating
arguments, after they have been put forward in dialogues, to check whether a
scheme has been applied correctly, identify missing premises and ask appropri-
ate critical questions. Argumentation schemes are also useful for constructing
new arguments to put forward, by using them as templates, forms or, more gen-
erally, procedures for generating arguments which instantiate the pattern of the
scheme. We elaborated the role of argumentation schemes for generating argu-
ments in a series of papers (Gordon, 2007b, 2008; Gordon and Walton, 2009b),
focusing on computational models of argumentation schemes studied in the field
of Artificial Intelligence and Law for legal reasoning, including Argument from
Defeasible Rules, Argument from Ontologies, and Argument from Cases.

3.1 Argument from Rules

The term “rule” has different meanings in different fields, such as law and com-
puter science. The common sense, dictionary meaning of rule (Abate and Jewell,
2001) is “One of a set of explicit or understood regulations or principles gov-
erning conduct within a particular sphere of activity.” It is this kind of rule
that we are interested in modeling for the purpose of constructing arguments.
In the field of artificial intelligence and law, there is now much agreement about
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the structure and properties of rules of this type (Gordon, 1995; Prakken and
Sartor, 1996; Hage, 1997; Verheij, 1996):

1. Rules have properties, such as their date of enactment, jurisdiction and
authority.

2. When the antecedent of a rule is satisfied by the facts of a case, the
conclusion of the rule is only presumably true, not necessarily true.

3. Rules are subject to exceptions.

4. Rules can conflict.

5. Some rule conflicts can be resolved using rules about rule priorities, e.g.
lex superior, which gives priority to the rule from the higher authority.

6. Exclusionary rules provide one way to undercut other rules.

7. Rules can be invalid or become invalid. Deleting invalid rules is not an
option when it is necessary to reason retroactively with rules which were
valid at various times over a course of events.

8. Rules do not counterpose. If some conclusion of a rule is not true, the rule
does not sanction any inferences about the truth of its premises.

One consequence of these properites is that rules cannot be modeled ade-
quately as material implications in predicate logic. Rules need to be reified as
terms, not formulas, so as to allow their properties, e.g. date of enactment, to
be expressed and reasoned about for determing their validity and priority.

In the Carneades software, methods from logic programming have been
adapted and extended to model legal rules and build an inference engine which
can construct arguments from rules. Rules in logic programming are Horn
clauses, i.e. formulas of first-order logic in disjunctive normal form, consisting
of exactly one positive literal and zero or more negative literals. The positive
literal is called the ‘head’ of the rule. The negative literals make up the ‘body’
of the rule. A rule with an empty body is called a ‘fact’. In logic programming
these rules are interpreted as material conditionals in first-order logic and a
single inference rule, resolution, is used to derive inferences. Since there is no
way to represent negative facts using Horn clauses, rules do not counterpose in
logic programming, even though they are interpreted as material conditionals
and the resolution inference rule is strong enough to simulate modus tollens. In
Carneades, we do not interpret rules as material conditionals, but as domain-
dependent inference rules. Both the head and body of rules are more general
than they are in Horn clauses. The head of a Carneades rule consists of a set
of literals, i.e. both positive and negative literals. The body of a Carneades
rule consists an arbitrary first-order logic formula, except that quantifiers and
biconditionals are not supported. Variables in the body and head of a rule are
interpreted as schema variables. Using de Morgan’s laws, Carneades compiles
rules into clauses in disjunctive normal form. Given an atomic proposition P , a
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rule can be used to construct an argument pro or con P if P or ¬P , respectively,
can be unified with a literal in the head of the rule.

The burden of proof for an atomic proposition in the body of a rule can
be allocated to the opponent of the argument constructed using the rule, by
declaring the proposition to be an exception. The syntax of rules has been
extended to allow such declarations. Similarly, a proposition in the body of a
rule can be made assumable, without proof, until it has been questioned by the
opponent of the argument. These features make it possible to use Carnedes
rules to model a broad range of argumentation schemes, where exceptions and
assumptions are used to model the critical questions of the scheme. Whether a
critical question should be modeled as an exception or an assumption depends
on whether the “shifting burden” or the “backup evidence” theory of critical
questions is more appropriate (Gordon et al., 2007).

The Carneades inference engine uses rules to construct and search a space
of argument states, where each state consists of:

topic. The statement, i.e. proposition, which is the main issue of the dialogue,
as claimed by its proponent.

viewpoint. Either ‘pro’ or ‘con’. When the viewpoint is pro, the state is a
goal state if and only if the topic of the state satisfies its proof standard.
If the viewpoint is con, the state is a goal state only if the topic does
not satisfy its proof standard. Notice the asymmetry between pro and
con. The con viewpoint need not prove the complement of the topic, but
need only prevent the pro viewpoint from achieving its goal of proving the
topic.

pro-goals. A list of clauses, in disjunctive normal form, where each clause rep-
resents a set of statements which might be useful for helping the proponent
to prove the topic.

con-goals. A list of clauses, in disjunctive normal form, where each clause rep-
resents a set of statements which might be useful for helping the opponent
to prevent the proponent from proving the topic.

arguments. A graph of the arguments, representing all the arguments which
have been put forward, hypothetically, by both the pro and con roles
during the search for arguments.

substitution. A substitution environment mapping schema variables to terms.
The scope of variables is the whole argument graph. Variables in rules are
renamed to prevent name conflicts when they are applied to construct
arguments.

candidates. A list of candidate arguments, which have been previously con-
structed. A candidate argument is added to the argument graph, and
removed from this list, only after all of its schema variables are instanti-
ated in the substitution environment. This assures that all statements in
the argument graph are ground atomic formulas.
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The space of states induced by a set of argument generators, such as the
generator for the scheme for argument from rules, may be infinite. Carneades is
implemented in a modular way which allows the space to be searched using any
heuristic search strategy. Common strategies have been implemented, including
depth-first search, breadth-first and iterative-deepening. For all of these strate-
gies a resource limit, restricting the number of states which may be visited in
the search space, may be specified, to assure termination of the search proce-
dure. The system is extensible. Further heursitic-search strategies, including
domain-dependent strategies, can be implemented and plugged into the search
procedure. By default, Carneades uses a resource-limited version of depth-first
search.

The heuristic search strategies are implemented in a purely functional way.
Given a state and set of argument generators for computing successor states,
the successor states are modeled as a stream of states, where each successor
state is generated, lazily, just before it is visited by the search strategy to check
whether or not it is a goal state.

The Legal Knowledge Interchange Format (LKIF) also includes an XML
language for rules, as well as arguments (ESTRELLA Project, 2008). The
Carneades software is able to import and export both arguments and rules in
LKIF format.

3.2 Argument from Ontologies

In computer science, an ontology is a representation of concepts and relations
among concepts, typically expressed in some decidable subset of first-order logic,
such as description logic (Baader et al., 2003). Such ontologies play an impor-
tant role in integrating systems, by providing a formal mechanism for sharing
terminology, and also in the context of the so-called Semantic Web (Berners-Lee
et al., 2001) for providing machine-processable meta-data about web resources
and services. There is a World Wide Web standard for modeling ontologies in
XML, called the Web Ontology Langauge (OWL) (McGuinness and van Harme-
len, 2004). The Carneades software includes a compiler from OWL ontologies,
encoded using the syntax of the Knowledge Representation System Specifica-
tion (KRSS) (Patel-Schneider and Swartout, 1994), into Carneades rules, based
on the Description Logic Programming (DLP) mapping of Description Logic
axioms into Horn clause rules (Grosof et al., 2003). The latest version of OWL
includes a rule language profile, called “OWL 2 RL”, which is also based on
DLP. We may in the future make an effort to assure that Carneades is compliant
with the RL profile of the OWL 2 standard. Work is in progress on a compiler
from the standard RDF/XML format for OWL directly into Carneades rules, to
avoid the currently necessary intermediate step of translating OWL ontologies
in RDF/XML first into KRSS format.

Ontologies and rules may be used together to construct arguments with
Carneades. LKIF uses OWL to define the language of individual, predicate and
function symbols, represented as Uniform Resource Identifers (URIs), which
may be used in rules. URIs provide a world-wide way to manage symbols,
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avoiding ambiguity and name clashes. This enables very large knowledge bases
to be constructed, in a distributed and modular way. LKIF files can import
OWL ontologies and, recursively, other LKIF files.

Reasoning with OWL ontologies is defeasible in Carneades. Any argument
derived from axioms of an ontology, using the translation of these axioms into
Carneades rules, may be undercut or rebut by other arguments. Thus, unlike
some nonmonotonic logics, such as Defeasible Logic (Nute, 1994), Carneades
does not distinguish between ‘strict’ and defeasible rules. All rules are defeasible,
also those derived from the axioms of an ontology. We believe this simplification
is justified for the kinds of domains we are interested in supporting, where
practical reasoning about the “real world” is more important than reasoning
about abstract mathematical concepts. Outside of mathematics, generalizations
are rarely universal.

3.3 Argument from Cases

In the Artificial Intelligence and Law community a great deal of research has
been conducted on case-based legal reasoning, particularly in common law ju-
risdiction such as the United States, where arguing with precedent cases plays
a very central role in both legal education and practice. When trying to apply
legislation to a particular case, at least two kinds of related interpretation prob-
lems must be faced. The first interpretation problem is to construct general
legal rules from legislation expressed in natural language. The goal is to deter-
mine the operative legal facts which must be established when applying a legal
rule in order to construct an argument for the conclusion of the rule. In the law
of contracts, for example, there is a rule stating, essentially, that a contract re-
quires an offer, acceptance and an exchange of promises (‘consideration’). Here,
‘offer’, ‘acceptance’ and ‘consideration’ are the operative legal facts. They are
abstract technical terms of law. The second interpretation problem arises when
trying to apply these operational legal facts to the concrete facts of a partic-
ular case. Has an offer been made? Has consideration been exchanged? This
problem, called the subsumption problem, also requires the interpretation of the
legislation, in the light of past precedent cases. Operative legal facts typically
denote ‘open-textured’ concepts (Hart, 1961).

These interpretation problems are at the root of the continual debate about
the proper role of judges and the relationship between the legislative and judicial
branches of government, as we witnessed again recently during the confirmation
hearings of Judge Sotomayor to the US Supreme Court. Since judges are not
typically elected by the people, and may be thought to lack the same level of
democratic legitimacy, many people insist that judges should interpret legisla-
tion narrowly. Judges should merely apply the law and not usurp the exclusive
right of the legislature to make law. But an overly simplistic view of judging
fails to appreciate the distinctions between legal norms and their necessarily
imperfect and ambigious representation in natural language in legislation and
the hermeneutic difficulties of interpreting natural language, even given the best
of intentions and conscientious effort.
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In the field of Artifical Intelligence and Law, computational models of case-
based reasoning are arguably still at an early developmental stage, reflecting
presumably the lack of a deep and widely accepted theory of legal reasoning with
cases in legal philosophy. The most influential work on case-based reasoning
in AI and Law is the HYPO system (Rissland, 1989; Ashley, 1990) and its
successors, CABARET (Skalak and Rissland, 1992) and CATO (Aleven and
Ashley, 1997).

In Carneades, we have implemented a reconstruction of CATO by Wyner and
Bench-Capon (2007). For some legal issue, such as whether or not information
was a trade secret, the legal domain modeled in HYPO, the precedent cases
are analysed to collect the set of factors which were found relevant for deciding
the issue. A factor is a proposition which tends to favor either one side or
the other regarding the legal issue. For example, efforts to keep the information
secret tend to support a finding that the information was a trade secret, whereas
disclosure of the information to people outside the company tends to support
a finding that the information was not a trade secret. Each precedent case is
modeled as a set of such factors together with the decision of the court regarding
the issue of interest, such as, in our example, whether the information was found
to be a trade secret or not. Given the set of factors known or assumed to be
true in the current case, Carneades constructs, for each precendent case, a set
of six partitions of the union of the factors of the current case and the precedent
case. For example, partition P1 is the intersetion of the pro-plaintiff factors
in the precedent case and the pro-plaintiff factors in the current case. And
partition P5 is the set of pro-defendant factors in the current case which are
not in the precedent case. These partitions are used in computational models
of six argumentation schemes to analogize cases, distinguish cases argued to be
analogous as well as downplay these distinctions.

There is a problem integrating arguments from ontologies or rules with case-
based arguments using this reconstruction of CATO, since ontologies and rules
are modeled at a finer level of granularity, using predicate logic, than the factors
in this model of case-based reasoning, which are at a more abstract, proposi-
tional level of granularity. This problem is overcome in Carneades using bridging
rules, similar to the output/input transformers of Prakken (2008), to map pred-
icate logic formulas to factors. Since different instantiations of schema variables
in the predicate logic formulas can get mapped to the same factor, losing any
distinctions between these various formulas in the resulting argument graphs,
this solution only works when one can safely assume that at most one predicate
logic formula will get mapped to each factor during the analysis of a particular
case. For example, this solution may not be adequate if two different pieces of
information must be evaluated to be determined whether they are trade secrets
in a single case, unless the problem can be reduced to two problems that can
be analysed separately.
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Figure 2: Screenshot of the Carneades Argument Diagramming Tool

4 Argument Visualization

We have been experimenting with methods for visualizing Carneades argu-
ment graphs and designing graphical user interfaces for working with argument
graphs. An important difference between our work and most prior work on ar-
gument visualization, with the exception of Verheij (2005), is that our diagrams
are views onto a mathematical model of argument graphs and the user inter-
faces provide ways to modify, control and view the underlying model. Argument
diagramming software for Wigmore (1908), Beardsley (1950) or Toulmin (1958)
diagrams, such as Araucaria (Reed and Rowe, 2004) or Rationale3, lack this
mathematical foundation. Essentially, the diagrams are the models in these
other systems, rather than views onto a model.

Our approach gives us much freedom to experiment with different diagram-
ming methods and user interfaces for manipulating Carneades argument graphs,
without changing the underlying model of argument. In Gordon (2007a), we
described a couple of different approaches, including one which is very close to
Wigmore’s style of argument diagramming.

One diagramming issue we have been discussing again recently, is how best
to represent undercutters, i.e arguments which directly attack the inferential
link between the premises of an argument and its conclusion. An undercutter
claims that the premises of the argument being undercut do not give us rea-
son to derive the conclusion of the argument, not even presumptively. In the

3http://rationale.austhink.com/
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Carneades mathematical model of argument graphs, undercutters are modeled
as attacks on the major premise of an argument. If the major premise has been
left implicit, in an enthymeme, then it is first made explicit by adding it to
the argument, before adding the undercutting argument. Some diagramming
tools, such as ArguMed (Verheij, 2005), use a technique called ‘entanglement’ to
visualize undercutters, in which the undercutting argument points to the arrow
between the premises and conclusion of the argument being undercut. It would
be possible to use this diagramming method in views of Carneades argument
graphs as well, by visualizing the major premise of an argument as the arrow
or link from the minor premises to the conclusion of the argument.

The Carneades software includes a library for generating diagrams of argu-
ment graphs using Graphviz (Ellson et al., 2001), which can produce graphs in
various file formats, including PDF and SVG4. These diagrams, however, are
not interactive and thus do not provide a user interface for creating or editing
argument graphs. Work is underway on an new argument diagramming tool
for Carneades which will be much more interactive, provide better support for
argumentation schemes and be integrated with other Carneades tools, such as
the inference engine for generating arguments from ontologies, rules and cases.
Figure 2 shows a screen shot of a prototype of this new tool. The Carneades
argument diagramming tool will provide users with a variety of views onto
Carneades argument graphs, including high-level, abstract views which show
only attack and support relations among arguments, similar to diagrams of the
kind typically used to visualize Dung Argumentation Frameworks (Dung, 1995).

5 Conclusions and Future Work

The Carneades software is a toolbox for supporting various argumentation tasks,
designed and built in collaboration with Doug Walton on the foundation of his
philosophy of argumentation. The Carneades argumentation toolbox is work in
progress. Here we summarized the tools currently available in Carneades for
reconstructing, representing and evaluating arguments, for using a knowledge-
base of ontologies, rules and case to search for and construct arguments for
both sides of an issue and for visualizing complex networks of arguments in any
effort to make relationships among arguments clearer and more understandable,
especially to lay audiences.

Much work remains. Although the Carneades inference engine for the LKIF
was validated in pilot applications during the ESTRELLA project, further pilot
applications and case studies are needed, especially with regard to other parts
of the system, such as the argument visualization tools. Currently the system
is too difficult to install and requires too much specialist knowledge to use.
Our work on the new argument diagramming tool is a first step in the direc-
tion of developing a better integrated, easy-to-install and easy-to-use version of
Carneades.

4http://www.w3.org/Graphics/SVG/
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In addition to consolidating existing features, improving their usability with
a rich graphical user-interface, we have plans for additional features, to support
further argumentation tasks:

• The next version of the Carneades argument diagramming tool will include
support for using argumentation schemes, both to classify and evaluate
existing arguments and to construct new arguments, similar to the support
for argumentation schemes provided currently by Araucaria.

• As discussed in (Gordon and Walton, 2009b), Carneades currently also
has a module for interacting with users to generate arguments from wit-
ness testimony. This serves as a dialogue component for Carneades which
enables it to be used as an expert-system shell. As Carneades applies on-
tologies, rules and cases while searching for arguments to answer a query
posed by the user, in a backward-chaining way, this component enables
Carneades to ask the user questions to obtain information about the facts
of the case. This component currently only has a command-line user
interface and is thus little more than a proof-of-concept. A graphical
user-interface for this feature is planned, for use in both web and desktop
applications.

• Similarly, we would like to extend Carneades with a web-based user
interface comparable to Parmenides (Atkinson et al., 2006), to enable
Carneades to be used as a collaboration tool on the web for collecting
arguments, by generating surveys which help lay users to apply argumen-
tation schemes and ask critical questions.

• The argument diagramming tool and the inference engine tool for gener-
ating arguments from knowledge-bases should be more tightly integrated,
to implement a kind of graphical debugger and tracer. As the inference
engine searches for arguments, the argument graph of each state in the
search space could be visualized, along with the other information of the
state, such as the list of open goals. We would like to provide users with a
way to guide the search for arguments, for example by manually ordering
the goals or backtracking to some prior state. This system would take
us a step further towards our goal of making Carneades a tool for assist-
ing users with argumentation tasks. Currently the argument construction
module is too much like a fully automatic theorem prover.

• We would like to continue our collaboration with Lauritsen on document
assembly to extend Carneades with a tool which uses the information in
an argument graph to generate outlines of explanatory or justificatory
documents, such as court opinions (Lauritsen and Gordon, 2009).

• At the rhetorical level, we have begun work on modeling assumptions
about the beliefs, values and preferences of audiences, along with methods,
using a kind of abduction, which make use of this information to select
goal statements to try to prove or disprove in dialogues.
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• One of the anonymous reviewers suggested an interesting topic for future
research: modeling knowledge about whether it is worthwhile to engage in
argumentation in the first place. As he pointed out, arguing is not always
the best way to resolve conflicts or coordinate actions.

• We are working with Brewka to apply his work on Abstract Dialectical
Frameworks (Brewk and Woltran, 2010) to clarify the formal relationship
between Carneades and Dung Argumentation Frameworks (Dung, 1995).

• Finally, we plan to revisit the research topic we addressed in the Pleadings
Game (Gordon, 1995), by extending Carneades with tools supporting the
procedural aspects of argumentation dialogues. But unlike the Pleadings
Game, which modeling a particular type of dialogue, our aim here is to
provide Carneades with a way to define and use protocols for a variety of
dialogue types. We would like to investigate the suitability of prior work
on business process modeling tools and workflow engines for this purpose.
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