
Analyzing Open Source
License Compatibility Issues

with Carneades

Thomas F. Gordon
Fraunhofer FOKUS

Berlin, Germany
thomas.gordon@fokus.fraunhofer.de

ABSTRACT
The Carneades software system provides support for constructing,
evaluating and visualizing arguments, using formal
representations of facts, concepts, defeasible rules and
argumentation schemes. This paper illustrates features of
Carneades with a prototype legal application for analyzing open
source software license compatibility issues in particular cases.
The Carneades system provides a unique combination of features
that make to our knowledge applications of this kind possible for
the first time.

Keywords
legal knowledge representation, computational models of
argument, copyright law

1. INTRODUCTION
This paper illustrates features of the Carneades

argumentation system [14] with examples from a prototype legal
application for analyzing open source license compatibility issues
[15]. As Bing [3], Fiedler [7], McCarty [17] and many others have
noted, legal argumentation is “not primarily deductive, but rather
a modeling process of shaping an understanding of the facts,
based on evidence, and an interpretation of the legal sources, to
construct a theory for some legal conclusion” [3]. The parties in a
legal dispute construct competing theories and argue about their
relative merits. Carneades is designed to support all the steps in
this process of theory construction, argumentation and
evaluation.1

The Carneades software system is based on a well-founded
formal model of structured argumentation with support for proof
burdens and standards [9,10], now called Carneades Argument

1 http://carneades.berlios.de

Evaluation Structures (CAES). It has been formally proven that
the Carneades model of argument is a specialization of both
Prakken’s ASPIC+ model of structured argumentation [8] and
Brewka’s Abstract Dialectical Frameworks [5] and thus an
instantiation of Dung’s Abstract Argumentation Framework [4,8].
Carneades has also been shown by Governatori to be closely
related to Defeasible Logic [16]. A formal model of abduction in
Carneades argument evaluation structures has been developed [2],
which is useful for identifying relevant issues and computing
minimal sets of statements, called positions, which, if proven,
would make some goal statement acceptable (in) or not acceptable
(out) in a stage of a dialogue.

Building on this formal foundation, the Carneades software
provides a number of tools for interactively constructing,
evaluating and visualizing arguments, as well as computing
positions. Arguments are constructed using formalizations of
facts, concepts, defeasible rules and argumentation schemes
[11,12]. Facts and concepts are represented using the Web
Ontology Language (OWL), an XML schema for description
logic [1], a subset of first-order logic and thus with a monotonic
(strict) entailment relation. Legal rules and argumentation
schemes [18] are both modeled as defeasible inference rules,
represented in the Legal Knowledge Interchange Format (LKIF)
[6]. The rules of alternative, competing theories of the law can be
included in a single model.

A combination of forwards and backwards reasoning is used
to construct arguments: a description logic reasoner constructs the
deductive closure of the concepts and facts in a forwards manner;
the Carneades rules engine uses backwards reasoning to apply the
defeasible inference rules in a goal-directed and stratified way to
the deductive closure of the description logic theory of facts and
concepts. The LKIF rule language has been extended to provide a
way to declare the domain of variables using predicates defined in
OWL, similar to the way variables are typed in programming
languages. These domain declarations provide important control
information that enables the rule engine to iterate over instances
of the domains to more efficiently instantiate the rules.

In addition to the arguments constructed automatically from
a knowledge-base of facts, concepts and rules, arguments can
manually entered into the system by the user. These arguments
can be completely ad hoc or instantiations of argumentation
schemes. The Carneades system currently includes a library of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICAIL '11, June 6-10, 2011, Pittsburgh, PA
Copyright 2010 ACM 978-1-4503-0755-0/11/06…$10.00.

about 20 of Walton’s most important argumentation schemes
along with a software assistant which steps the user through the
process of selecting and instantiating schemes.

As the arguments are constructed and edited, they are
visualized in an argument map [13]. The graphical user interface,
called the Carneades Editor, supports argument evaluation by
providing tools to accept and reject statements, assign proof
standards and weigh arguments. After every modification, the
underlying computational model of argument is used to update
and visualize the acceptability status of statements in the map.
The differential legal effects of competing theories can be
analyzed by assuming their rules to be valid and then checking
how this effects the acceptability of issues of interest in the
argument map. Moreover Carneades provides a “find positions”
assistant which can be used to abduce theories with desired legal
effects.

The rest of this paper illustrates features of Carneades with
examples from the prototype legal application for analyzing open
source license compatibility issues. We start with examples from a
simple OWL ontology for describing software licenses and use
and derivation relationships between works of software. Next we
show how to use the ontology to model the facts of a case. We
then show how to model some rules of copyright law in LKIF,
focusing on the issue of whether linking to a software library
produces a derivative work. These models are then used to
illustrate how Carneades can be used to construct, evaluate and
visualize arguments about whether or not the project may publish
its software using a particular open source license, i.e. whether a
preferred license is compatible with the licenses of the software
used by the project. We conclude by showing how abduction can
be used to find positions that are helpful for proving, or
disproving, depending on one's standpoint and interests, that a
license is compatible.

2. Concepts and Facts
Carneades uses the Web Ontology Language (OWL), a

World Wide Web standard XML schema for representing and
interchanging description logic knowledge bases. These
knowledge bases have two parts, for concepts (TBox) and facts
(ABox). The top-level concepts, called “classes” in OWL, for our
application are:

• CopyrightLicense. Individual licenses, with which a
particular legal entity, the licensor, grants rights to
another legal entity, the licensee.

• CopyrightLicenseTemplate. Open source license
templates, such as the GPL or BSD. A particular
copyright license can be an instance of such a template.

• LegalEntity. Legal persons, such as humans,
corporations and associations.

• LicenseTerm. The rights granted by a license and the
conditions of the license, limiting the rights granted.

• Work. Various kinds of intellectual products protected
by copyright, including software.

The Work class is for all works protectable by copyright. There is
a SoftwareEntity subclass of Work, intended to cover all kinds of
software artifacts, including not only source and object code, but
also more abstract entities such as APIs and specifications.

The main property of software entities of interest for license
compatibility issues is the isDerivedFrom property, expressing
that one entity has been derived from another. This legal issue
depends on the jurisdiction and the interpretation of the governing
law by the courts. The ontology includes properties for
representing various ways that software can use other software,
such compiledBy and linksTo. These properties are not from the
domain of copyright law, but rather from the domain of software
engineering.

In legal terms, the model of software concepts provides the means
to represent the material facts of a software licensing case. The
legal question is whether a particular use of software, such as
linking, is sufficient to create a derivative work. In legal jargon,
the question is whether a material fact, linking, can be subsumed
under the legal concept of a derivative work. None of these use
relations has been defined in the ontology to be a subproperty of
isDerivedFrom, because these legal issues have not been resolved
and we want to leave room to argue about them.

In addition to these use relations, the ontology includes properties
for representing the compatibility of license templates and for
representing the licenses which have been issued for particular
works.

The software ontology was used to model an example
software project, roughly based on the current version of the
Carneades system. To illustrate, here is the model of some facts
about the Carneades inference engine:

CarneadesEngine
 type: SoftwareLibrary
 implementedIn: Clojure
 compiledBy: ClojureCompiler
 linksStaticallyTo: ClojureLib
 linksStaticallyTo: Pellet

One of the libraries used by the Carneades engine is the Clojure
library (ClojureLib) which is licensed using the Eclipse Public
License (EPL) template, named EPL_Template in the model. In
the model, the ClojureLib does not have the EPL_Template as its
license, but rather has its own license, named ClojureLicense, that
is an instance of the EPL template. This way of modeling licenses
allows each instance of a template license to have its own licensor
and licensee. This is necessary since the license and the template
used to create the license are two different objects with different
properties. For example, the copyright owners of the software and
the template license are typically different persons.

Another library linked to by the Carneades engine uses the GNU
AGPL license template. Since the EPL and AGPL are
incompatible reciprocal licenses, a central question will be
whether the Carneades engine can be linked to both of these
libraries. This will depend on whether the linking of software to a
library causes the software to be a derivative work of the library.
We will return to this question after showing, in the next section,
how alternative interpretations of copyright law can be modeled
using LKIF rules.

3. RULES
Description logic (DL) is semantically a decidable subset of first-
order logic. This means that the inferences of description logic
reasoners are strict: if the axioms of a DL knowledge base are true
in some domain, then all of the inferences made by a (correctly
implemented) DL reasoner are necessarily also true, without

exception. While DL is very powerful and useful, monotonic
logics are not sufficient for modeling legal rules, such as the rules
of copyright law, in a maintainable and verifiable way,
isomorphic with the structure of legislation and regulations.
Legislation is typically organized as general rules subject to
exceptions. Arguments made by applying legal rules are
defeasible. Their conclusions can be defeated with better
counterarguments. Various legal rules may conflict with each
other. Theses conflicts are resolved using legal principals about
priority relationships between rules, such as the principal of lex
superior, which gives rules from a higher authority, such as
federal law, priority over rules from a lower authority, such as
state law. These properties of legal rules are well known in AI and
Law and have been studied extensively. References are omitted
for lack of space.

Thus we model legal rules using a defeasible rule language which
has been developed especially for this purpose, as part of the
Legal Knowledge Interchange Format (LKIF), and use description
logic (OWL more specifically) for more limited purposes: 1) to
declare the language of unary and binary predicate symbols
(called concepts and roles in DL, classes and properties in OWL)
of the application domain; and 2) to make assertions about these
predicates, using DL axioms, which are judged to be universally
true and beyond dispute in the domain.

Here we illustrate the LKIF rule language by modeling two
interpretations of the concept of a derivative work in copyright
law. Since opinions differ about how to interpret copyright law in
the context of open source licensing issues, for example about
whether or not linking to a software library creates a derivative
work, an important feature of our approach is the ability to include
alternative legal theories in a single model, and to construct
competing arguments from these alternative legal theories.

We begin with the general rule that the copyright owner of
software may license the software using any license template he
chooses.

<rule id="DefaultLicenseRule">
 <head>
 <s pred="&oss;mayUseLicenseTemplate">
 <v>SE</v> may be licensed using
 the <v>T</v> template
 </s>
 </head>
</rule>

Since LKIF is an XML schema, rules are represented in XML.
This particular rule has a head (conclusion) but no body
(conditions). Even though the rule has no conditions, inferences
made using this rule are not necessarily or universally true, but
remain defeasible. We will make use of this feature to express
exceptions to this general rule below.

The rule has been assigned an identifier, DefaultLicenseRule,
which may be used to formulate statements about the rule. That is,
rules are reified and may be reasoned about just like other objects.

The predicate symbol of the statement (proposition) in the head of
the rule is specified using the pred attribute. Its value can be the
name of a class or property in a OWL ontology, as in this
example. The &oss; entity reference refers to the ontology,
using its URI.

Declaring predicate symbols in ontologies makes it possible to
divide up the model of a complex domain theory into modules,
with a separate LKIF file for each module. OWL provides a way
to import the classes and properties of other OWL files,
recursively. Similarly, LKIF provides a way to import both LKIF
and OWL files. OWL makes it easy to manage predicate symbols
across the boundaries of modules and to make sure that symbols
in different modules refer to the same class or property when this
is desired.

The XML syntax for rules in LKIF is rather verbose and not
especially readable. Fortunately, it is easy to write programs for
converting XML into more readable formats. Moreover, XML
structure editors exist which use style sheets to enable authors to
edit XML documents directly in a more readable form. Using this
feature, the above rule can be displayed in the editor as follows:

rule DefaultLicenseRule
 head SE may be licensed using the T template

We will use this more readable format for displaying LKIF rules
in the remainder of this article. Next let us formulate an exception
to the general rule that any license template may be used for
reciprocal licenses:

rule ReciprocityRule
 head
 not: SE1 may be licensed using the T1 template
 domains
 SE1 uses SE2
 SE2 has license L
 body
 L is reciprocal
 SE1 is derived from SE2
 unless exists T2 : L is an instance of template T2
 such that T1 is compatible with T2

This reciprocity rule states that a software entity, SE1, may not be
licensed using a license template, T1, if the software is derived
from another software entity, SE2, licensed using a reciprocal
license, L, unless L is an instance of a template license, T2, which
is compatible with T1. The use of domains in this rule provides
control information to make use of forward chaining in the
description logic reasoner, as discussed in the introduction. Notice
that the conclusion of the rule is negated and that the last
condition of the rule expresses a further exception, using an
“unless” operator.

These two rules illustrate two kinds of exceptions. In
argumentation terms, arguments constructed using the
ReciprocityRule rebut arguments constructed using the
DefaultRule and arguments which make use of the explicit
exception of the ReciprocityRule, by showing that the licenses are
compatible, undercut the reciprocity argument.

Let us end this brief overview with rules modeling two conflicting
views about whether or not linking creates a derivative work.
According to the lawyers of the Free Software Foundation, linking
does create a derivate work. Lawrence Rosen, a legal expert on
open source licensing issues, takes the opposing point of view and

argues that linking per se is not sufficient to create derivate works.

rule FSFTheoryOfLinking
 head
 SE1 is derived from SE2
 body
 SE2 is a software library
 SE1 is linked to SE2
 The FSF theory of linking is valid

rule RosenTheoryOfLinking
 head
 not: SE1 is derived from SE2
 body
 SE2 is a software library
 SE1 is linked to SE2
 The Rosen theory of linking is valid

The last condition of each of these rules requires that the
interpretation of copyright law represented by the rule is legally
valid. Making this condition explicit enables us to argue about
which theory of linking is correct, to compare the effects of these
two theories on particular cases, and to use abduction to derive
positions about which theory to prefer.

4. ARGUMENTS
Now let's use the two legal theories of linking we have

modeled with LKIF rules to analyze a licensing issue of the
example software project. Recall that in the example, the
Carneades engine is implemented using the Clojure programming
language and links to the Clojure library, as well some others,
including the Pellet library. The Clojure compiler and library are
licensed using the EPL. The Pellet library uses the AGPL variant
of the GPL. Both the EPL and AGPL are reciprocal.

Suppose we want to analyse whether the Carneades engine may
be licensed using EPL. Using the Carneades assistant for
constructing arguments from ontologies and rules, we can create
an interactive argument map about this issue, as shown in Figure
1. Argument evaluation structures can be visualized in many
ways, at different levels of abstraction. The visualization shown

uses a bipartite labeled directed graph, with statement and
argument nodes. Statement nodes are displayed using boxes;
argument nodes with circles. The propositional content of a
statement node is shown as text inside the box, in either natural
language or, as in this example, in a formal language. The map
includes two arguments about this issue, a pro argument and a con
argument. Pro arguments are visualized by circles containing a
plus sign; con arguments by circles containing a minus sign. In
the example, the pro argument was constructed from the
DefaultLicenseRule. Recall that this general rule states that, by
default, a software entity may be licensed using any template
license, with no limitations on the copyright owner. Since this rule
has no conditions, the argument constructed from it has no
premises. Arguments are applicable when all of their premises
hold. Thus, arguments with no premises, such as this one, are
always applicable. In the figure, applicable arguments and
acceptable statements are visualized by filling their circle or box,
respectively, with a grey background. Arguments are linked to
their premises and conclusion using various kinds of edges
between the statement and arguments nodes in the diagram. Solid
lines denote ordinary premises; dotted lines denote exceptions.

As can be seen in the figure, the FSF and Rosen theories about
whether or not linking creates a derivative work have both been
applied, to construct pro and con arguments about whether or not
the software is derived from Pellet. The open question is whether
either of these two legal theories is valid. If the FSF theory of
linking is valid, then the software is derived from Pellet and the
con argument from reciprocity is applicable. This con argument
would rebut the argument from the default license rule, with the
result that it is not acceptable to use the EPL license template.

Users can analyze the affects of different legal theories on issues
of a case by accepting or rejecting the validity of rules in the
argument map. Carneades reevaluates the arguments after each

Figure 1. Example Argument Map

change and updates the visualization accordingly. Moreover, a
“find positions” assistant, based on our formal model of abduction
in Carneades argument evaluation structures [2], can be used for
computing minimal sets of statements which, if accepted, would
make a given statement acceptable (in) or not acceptable (out) in
the argument graph. In the example, if the aim is to be able to use
the EPL template, one of the positions computed is {(not (valid
FSFTheoryOfLinking))}. Finally, an “instantitate scheme”
assistant is available for helping users to apply argumentation
schemes, such as argument from expert opinion, to construct
arguments and add them to the map. One could use this tool, e.g.,
to add the arguments of the Free Software Foundation and
Lawrence about the validity of their respective theories of linking.

5. CONCLUSION
We have illustrated features of the Carneades argumentation

system with a prototype legal application for analyzing software
licensing issues. To our knowledge, no other argumentation or
rule-based system currently provides the combination of tools
required for this application: 1) automatic argument construction
from a knowledge base of strict and defeasible rules; 2) argument
mapping; 3) argument evaluation; 4) interactive construction of
arguments using argumentation schemes; 5) exploration of effects
of alternative legal theories; and 6) computation of positions,
using abduction. The source code of the application is freely
available, as open source software, and we offer it as a possible
benchmark problem to the AI and Law community.

6. ACKNOWLEDGEMENTS
This work was partially funded by the European projects Qualipso
(IST-FP6-034763) and IMPACT (IST-FP7-247228). An earlier
version of this paper was presented at the Jurix 2010 workshop on
Modeling Legal Cases and Legal Rules.

7. REFERENCES

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., eds. The Description Logic Handbook —
Theory, Implementation and Applications. Cambridge
University Press, 2003.

2. Ballnat, S. and Gordon, T.F. Goal Selection in Argumentation
Processes — A Formal Model of Abduction in Argument
Evaluation Structures. Proceedings of the Third International
Conference on Computational Models of Argument
(COMMA), IOS Press (2010), 51-62.

3. Bing, J. Uncertainty, Decisions and Information Systems. In
C. Ciampi, ed., Artificial Intelligence and Legal Information
Systems. North-Holland, 1982.

4. Brewka, G., Dunne, P.E., and Woltran, S. Relating the
Semantics of Abstract Dialectical Frameworks and Standard
AFs. Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI-2011), (2011), in
press.

5. Brewka, G. and Gordon, T.F. Carneades and Abstract
Dialectical Frameworks: A Reconstruction. Proceedings of
the Third International Conference on Computational Models
of Argument (COMMA), IOS Press (2010), 3–12.

6. ESTRELLA Project. The Legal Knowledge Interchange
Format (LKIF). 2008.

7. Fiedler, H. Expert Systems as a Tool for Drafting Legal
Decisions. In A.A. Martino and F.S. Natali, eds., Logica,
Informatica, Diritto. Consiglio Nazionale delle Richere,
Florence, 1985, 265-274.

8. Gijzel, B.V. and Prakken, H. Relating Carneades with abstract
argumentation. Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence
(IJCAI-2011), (2011), in press.

9. Gordon, T.F., Prakken, H., and Walton, D. The Carneades
Model of Argument and Burden of Proof. Artificial
Intelligence 171, 10-11 (2007), 875-896.

10. Gordon, T.F. and Walton, D. Proof Burdens and Standards. In
I. Rahwan and G. Simari, eds., Argumentation in Artificial
Intelligence. Springer-Verlag, Berlin, Germany, 2009, 239-
260.

11. Gordon, T.F. and Walton, D. Legal Reasoning with
Argumentation Schemes. 12th International Conference on
Artificial Intelligence and Law (ICAIL 2009), ACM Press
(2009), 137-146.

12. Gordon, T.F. Constructing Arguments with a Computational
Model of an Argumentation Scheme for Legal Rules –
Interpreting Legal Rules as Reasoning Policies. Proceedings
of the Eleventh International Conference on Artificial
Intelligence and Law, (2007), 117-121.

13. Gordon, T.F. Visualizing Carneades Argument Graphs. Law,
Probability and Risk 6, 2007, 109-117.

14. Gordon, T.F. An Overview of the Carneades Argumentation
Support System. In C.W. Tindale and C. Reed, eds.,
Dialectics, Dialogue and Argumentation. An Examination of
Douglas Walton!s Theories of Reasoning. College
Publications, 2010, 145-156.

15. Gordon, T.F. Report on a Prototype Decision Support System
for OSS License Compatibility Issues. 2010.

16. Governatori, G. On the Relationship between Carneades and
Defeasible Logic. Proceedings of the International
Conference on Artificial Intelligence and Law (ICAIL-2011),
(2011), in press, this volume.

17. McCarty, L.T. Some Arguments About Legal Arguments.
International Conference on Artificial Intelligence and Law,
(1997), 215-224.

18. Walton, D., Reed, C., and Macagno, F. Argumentation
Schemes. Cambridge University Press, 2008.

