
Structured Consultation with Argument Graphs
Thomas F. Gordon

Fraunhofer FOKUS, Berlin
thomas.gordon@fokus.fraunhofer.de

June 19, 2013

Abstract
This article presents the Carneades opinion formation and polling tool,

which was inspired by work by Katie Atkinson, Trevor Bench-Capon and
Adam Wyner at the University of Liverpool on the Structured Consulta-
tion Tool (SCT) they developed in the European IMPACT project. The
Carneades polling tool generalises and extends their results by using argu-
ment graphs to support consultations about any argument, independent of
the argumentation schemes used to reconstruct the arguments, by collect-
ing feedback on the arguments put forward on all sides of a debate, rather
than only the arguments of a single position of one party, such as the gov-
ernment agency proposing some policy, and by providing a convenient way
for respondents to rank stakeholders by the extent to which they share
opinions. Argument graphs abstract away details of the argumentation
schemes used to construct or reconstruct the arguments but not needed
for the purposes of conducting the poll. Moreover, Carneades provides a
high-level declarative language for argumentation schemes, enabling hu-
manities scholars, such as lawyers or argumentation experts, to define and
configure the set of argumentation schemes to be used to construct the
argumentation graphs, without requiring technical computer-science skills
or modifications to the implementation of the polling tool.

1 Introduction
It is a great personal pleasure for me to be able to contribute to this Festschrift
in honor of Trevor Bench-Capon. We have known each other for many years in
the field of Artificial Intelligence and Law, having both participated in many,
perhaps most, ICAIL and Jurix conferences, and have worked together rather
intensively since 2006, in a couple of European research projects, ESTRELLA
and IMPACT. I believe we first met 26 years ago at the first ICAIL conference,
which took place in Boston in 1987. Trevor and his colleagues presented two
papers on modeling legislation using logic programming [6, 7], an approach I
had been constructively criticizing for its insufficient support for isomorphic
modeling of exceptions [14, 16] and made an early attempt to rectify with the

1



Oblog system [15] I presented at the same conference. Trevor’s work on modeling
dialogue games [8, 9] directly influenced my research on the procedural aspects
of legal argumentation in dialogues, for my doctoral thesis on the Pleadings
Game, first presented at the 1993 ICAIL in Amsterdam [17]. I have always
enjoyed Trevor’s company and good humor and consider him a good friend.
And I don’t want to neglect to take this opportunity to thank Trevor for his
generous support over the years, in particular for his positive and helpful review
of my habilitation thesis [18], for which I am extremely grateful and will always
be in his debt.

My contribution here, however, was inspired by more recent work by Trevor
and his colleagues Katie Atkinson and Adam Wyner on the Structured Con-
sultation Tool (SCT) they developed in the European IMPACT project [1, 26].
I present a fully implemented polling tool, based on the Carneades argumen-
tation system, which generalizes and extends their results by using argument
graphs to support consultations about any argument, independent of the argu-
mentation schemes used to reconstruct the arguments, by collecting feedback
on the arguments put forward on all sides of a debate, rather than only the
arguments of a single position of one party, such as the government agency
proposing some policy, and by providing a convenient way for respondents to
rank stakeholders by the extent to which they share opinions. The polling tool
advances the state-of-the-art by using argument graphs to abstract away details
of the argumentation schemes used to construct or reconstruct the arguments
but not needed for the purposes of conducting the poll. This enables the tool to
be used to conduct polls about all arguments in an argument graph, no matter
which argumentation schemes have been applied to construct the graph. The
process of applying argumentation schemes to construct the argument graph is
cleanly separated from the process of using the argument graph to generate poll
questions. Moreover, Carneades provides a high-level declarative language for
argumentation schemes, enabling humanities scholars, such as lawyers or argu-
mentation experts, to define and configure the set of argumentation schemes
to be used to construct the argumentation graphs, without requiring technical
computer-science skills or modifications to the implementation of the polling
tool.

The Carneades argumentation system provides web-based, collaborative soft-
ware tools for:

• reconstructing the arguments of a debate in an argument graph
• visualizing, browsing and navigating argument graphs
• critically evaluating arguments
• forming opinions, participating in polls and ranking stakeholders by the
degree to which they share your views

• obtaining clear explanations, using argument graphs, of the different ef-
fects of alternative policies in particular cases

Carneades is open source software, available for downloading from http:
//carneades.github.com.

2

http://carneades.github.com
http://carneades.github.com


The focus of this paper is the polling tool of the Carneades system, which
serves two main purposes:

1. It guides users step by step through the arguments on all sides of a complex
policy debate, in a kind of simulated debate, providing an overview of the
issues, positions and arguments in a systematic way. The tool can help
users to form an opinion, if they do not yet have one, or to critically
evaluate and reconsider their current opinion, if they do. The tool also
enables users to compare their opinions with the published opinions of
stakeholders, such as political parties, which can be useful for finding
persons and organizations which best represent or share their views and
interests.

2. At the same time the tool conducts a poll to collect and aggregate views
and opinions on the issues of a debate, taking care to protect privacy. The
anonymous and aggregated results of the poll can provide valuable feed-
back, to the respondents and policy makers, going beyond the information
provided by typical surveys and polls. It enables users to discover not only
how much support policies enjoy, but also to learn precisely why particular
aspects of the policies, or their underlying assumptions, are supported or
not.

The rest of this paper presents an analysis of requirements for the polling
tool, the algebraic model of argument graphs underlying all tools of the Carneades
system, an overview of the design and implementation of the polling tool, a tour
of its user interface, and a discussion comparing the results with prior, related
work, in particular work in the European IMPACT project by Trevor, Katie
and Adam at the University of Liverpool on the Structured Consultation Tool.

2 Requirements Analysis
Following an agile methodology [21], the functional requirements of the polling
tool are defined here via user stories. User stories are brief, high-level statements
describing users in particular roles (who) that would like to be able to use the
system to perform some task (what) in order to achieve some benefit or value
(why). They are typically specified by filling in templates, such as “As a role, I
want to action, in order to value.” There are various versions of these templates,
but their differences are minor and not significant for our purposes.

Let us focus on the application scenario of the IMPACT project: supporting
public policy deliberations. In this scenario, first a government agency pub-
lishes a green or white paper on the Web regarding some policy topic, such as
“copyright in the knowledge economy”.1 Whereas green papers ask questions
about some policy topic, without proposing a specific policy, white papers do

1See http://ec.europa.eu/internal_market/copyright/docs/copyright-infso/
greenpaper_en.pdf.

3

http://ec.europa.eu/internal_market/copyright/docs/copyright-infso/greenpaper_en.pdf
http://ec.europa.eu/internal_market/copyright/docs/copyright-infso/greenpaper_en.pdf


propose a specific policy.2 For both types of papers, at the time of publication,
the agency invites interested parties to submit comments, proposals and argu-
ments, by uploading documents in PDF format to the agency website. At the
end of the commenting period, the agency analyses the comments and produces
a report summarizing the arguments contained in the comments, along with any
decisions taken by the agency as a result of the consultation process, which is
then published on its website.

The question which interests us is how to use argumentation technology to
support and improve this consultation process. Here we will focus mainly on the
requirements for the polling tool, which would provide interested persons with
an opportunity to learn about and evaluate claims and arguments put forward
during the consultation process, both by the government agency and by the par-
ties who submitted comments. One goal is to systematically generate polling
questions from an argument graph containing reconstructions of arguments in
the paper and comments, taking care to assure that all relevant critical ques-
tions are asked. The polls are conducted only after some arguments have been
reconstructed in an argument graph, using argumentation schemes to guide the
reconstruction process. If the initial paper contains arguments, for example ar-
guments in a white paper used to justify the proposed policy, a poll could be
conducted soon after publication of the paper, before any comments have been
submitted. Another alternative would be to wait until the commenting period
has expired to conduct the poll, to also collect feedback about the arguments
put forward in the comments. A further alternative would be to conduct several
polls during the consultation process, using the arguments which have been put
forward thus far in the process at each stage.

Several roles can be identified in this scenario:

Agency. The government agency which published the green or white paper and
manages the consultation process.

Analyst. The persons who have the job of using argumentation schemes to
reconstruct the arguments in the paper and comments, to build the ar-
gument graph. Analysts are presumed to have had some training in how
to reconstruct arguments, over a period of weeks, including how to use
argumentation software tools designed to support this tasks.

Commentator. A person or organization who submits a comment, putting
forward arguments in response to the green or white paper. Commenta-
tors are presumed to have some knowledge about the policy issue being
debated, but no specialist knowledge about argumentation theory or in-
formation technology.

Respondent. Persons who take part in the polls, to express their opinions
about the claims and arguments exchanged by the agency and the com-
mentators. It is presumed that these persons have no specialist knowledge

2For a description of the distinction between green and white papers, see http://en.
wikipedia.org/wiki/Green_paper.

4

http://en.wikipedia.org/wiki/Green_paper
http://en.wikipedia.org/wiki/Green_paper


in argumentation, information technology, the policy domain being dis-
cussed, or any other field, and are unwilling to invest any time in learning
how to use the polling software.

Humanities Scholar. Philosophers and others with the specialist knowledge
required to formalize argumentation schemes.

Given this consultation scenario, with these roles, functional requirements
for the polling tool can be formulated in the following user stories:

1. As an agency, I want to obtain feedback from the public with their opinions
on the claims and arguments put forward in a green or white paper, as
well as in the comments submitted during the consultation, in order to
understand which policy proposals are acceptable or not by the public,
along with the reasons for their opinions.

2. As an analyst, I want to be able to easily and quickly reconstruct the
arguments in the paper and comments, in order to produce a report sum-
marizing the arguments for the agency and the public.

3. As a poll respondent, I want to be able to participate in the poll in order
to learn more about the policy issues, influence the policy-making process
to protect my interests and discover which stakeholder organizations, such
as political parties, share my views and represent my interests.

4. As a humanities scholar, I want to be able represent and model argu-
mentation schemes using a high-level declarative language, in order to be
able to customize or extend the schemes used by analysts to reconstruct
arguments, without the help of IT experts or the need to modify the im-
plementation of the argument reconstruction tool.

3 Argument Graphs
All tools of the Carneades system, including the polling tool which is the focus of
this paper, are interoperable and tightly integrated due to their all being based
on the same underlying model of argument graphs. Currently, the following
tools are provided:

• A tool for creating and editing argument graphs using argumentation
schemes to reconstruct arguments in source text;

• An argument visualization tool for interactively viewing maps of argument
graphs containing links to source documents;

• The polling tool, for guiding users through argument graphs and collecting
and aggregating opinions about the claims and arguments represented in
the graphs;

• And a tool for analyzing the effects of rule-based models of policies in
particular cases, via dialogues with a kind of legal expert system, which
uses argument graphs to visualize and explain the results of the analysis.

5



Argument graphs play the role in argumentation of proof trees in classical
logic. They are structures representing chains of reasoning and more general,
nonlinear, relationships among inference steps. Whereas in proof trees the in-
ference steps are applications of the strict inference rules of some calculus for
classical logic, in argument graphs the steps are applications of more general
argumentation schemes, which may be defeasible as well as strict.

An individual inference step in an argument graph is called an argument
node. They are often also called “arguments”, but this terminology is less pre-
cise, since the term “argument” has other uses. In particular, argument nodes
are not arguments in the sense of Dung argumentation frameworks [12]. Another
term for argument nodes, suggested by Trevor in a personal correspondence,
would be “single-step argument”. With this caveat, in contexts where there is
little risk of confusion, we will use the term “argument node” and “argument”
interchangeably.

A single argument graph can be used to represent all the arguments put
forward in a debate, from all participants.

Argument graphs are abstract structures, which can be represented in vari-
ous concrete ways in software systems. The Carneades system currently repre-
sents argument graphs in three different, but isomorphic ways:

1. In XML, using an XML schema called the Carneades Argument Format
(CAF).

2. In relational databases, using a database schema defined in SQL.

3. Using data structures defined in the Clojure language, the Lisp dialect
used to implement Carneades.

The rest of this section provides a formal, algebraic specification of argument
graphs.

Definition (Argument Graph) An argument graph is a bipartite, directed,
labelled graph, consisting of statement nodes and argument nodes connected
by premise and conclusion edges. Formally, an argument graph is a structure
〈S, A, P, C〉, where:

• S is a set of statement nodes,
• A is a set of argument nodes,
• P is a set of premises, and
• C is a set of conclusions.

Argument graphs are bipartite, because they consist of two kinds of nodes,
argument nodes and statement nodes, and all edges (premises and conclusions)
link argument nodes to statement nodes, i.e. to nodes of different kinds.

Let L be a predicate logic language, containing a unary predicate symbol
applicable. Each statement node in S is labelled with a well-formed formula
of the language L.

Each argument node in A is a structure 〈i, s, d〉, where

6



• i is a term in L identifying the argument node (no two argument nodes in
an argument graph have the same identifier),

• s is a Boolean value which is true if the argument node is strict and false
if it is defeasible.

• d is a Boolean value, representing the direction of the argument, which is
true if the argument is pro its conclusion and false if it is con its conclusion.

An atomic formula in L of the form applicable(X) is intended to denote
that the argument node identified by the term X is applicable. This enables
the applicability of argument nodes to be an issue in argument graphs. An
argument node a1 is undercut by an argument node a2 if a2 is an argument
node con the conclusion applicable(a1).

The premises and conclusions of an argument graph represent the edges of
the graph, connecting the statement and argument nodes.

Each premise in P is a structure 〈s, a, p〉, where

1. s ∈ S,
2. a ∈ A,
3. p is a Boolean value denoting the polarity of the premise, i.e. positive or

negative. If p is true, then the premise is positive, otherwise it is negative.

Each conclusion in C is a structure 〈a, s〉, where

1. a ∈ A, and
2. s ∈ S

Every argument node has exactly one conclusion. That is, for every argu-
ment a ∈ A there exists exactly one 〈a,_〉 ∈ C.

An argument node may have zero or more premises. That is, it need not be
the case that for every a ∈ A there exists a premise 〈_, a,_〉 ∈ P .

Figure 1 shows a visualization of an example argument graph, instantiat-
ing an argumentation scheme for value-based practical reasoning [5]. Argument
nodes and statements nodes are represented by circles and boxes, respectively.
Statements nodes are labeled, for readability, with a natural language represen-
tation of their formula. Argument nodes are labeled with their id and a plus
or minus sign, indicating whether the argument is pro or con, respectively. The
conclusion of the con argument, a2, is shown in the visualization with a link to
the other argument node, a2. Thus it may appear that the argument graph is
not actually bipartite. However, this is just a more readable visualization of an
undercutting argument node. In the underlying argument graph, the conclu-
sion of a2 is actually a statement node containing the formula applicable(a1),
where by convention applicable is a standard predicate in every language L of
argument graphs. All the argument nodes in the example are defeasible. The
example does not illustrate negative premises.

Prior conceptualizations of argument graphs, such as Beardsley/Freeman
argument diagrams [4, 13] and the Argument Interchange Format (AIF) [11], do

7



Figure 1: Visualization of a Simple Argument Graph

not distinguish pro and con argument nodes or positive and negative premises.
Rather, in these prior approaches all argument nodes are pro and all premises
are positive. An argument con a statement node P is represented in these
prior approaches by an argument node having the conclusion ¬P . Similarly, if
one argument node has a premise P and another has a premise ¬P , then two
statement nodes are needed in the argument graph, using these prior approaches,
one for P and one for ¬P . Explicit “refutation” or “conflict” links are used to
express the information that P and ¬P are complementary statements. Our
approach has the advantage of reducing the number of statement nodes required
by up to 50%. There is no room here for a deep or scholarly comparison of
models of argument graphs, but a thorough comparison of Carneades argument
graphs and the Argument Interchange Format has been published [10]. For the
purpose of comparing the Carneades polling tool with the work of Trevor and his
colleagues on the Structured Consultation Tool, it should be sufficient to note
that the Structured Consultation Tool makes no use of any kind of argument
graph for modeling structured arguments.

The above formalization of argument graphs defines the basic, abstract data
model. In the implementation of the data model in the Carneades software, ar-
gument graphs have additional properties, omitted here, for associating weights
with the argument and statement nodes, recording the results of formally eval-
uating the argument graph and for annotating the elements of the graph with
metadata, quotations of and links to source documents, among other informa-
tion.

The weights associated with the statement and argument nodes of an ar-
gument graph represent the aggregated opinion of an audience [22] about the
truth or significance of the statement or argument, respectively. These weights
can be computed from the data collected using the polling tool.

8



The weights can then be used to formally evaluate the argument graph using
a computational model, based on an instantiation of the ASPIC+ framework
[23] that maps the argument graph to an abstract argumentation framework [12].
As in earlier versions of Carneades [19, 20] proof standards are used to resolve
conflicts between rebuttals, but by mapping argument graphs to Dung abstract
argumentation frameworks, cyclic argument graphs can now be handled. Proof
standards enable the risks of errors to be balanced against the costs of further
argumentation, such as the costs of collecting evidence. This is important for
practical reasoning in most domains, not just for legal reasoning.

4 Design and Implementation
The Carneades argumentation system, including its polling tool, is a three-tiered
Web application, with a relational database backend, an application logic layer,
and a Web client user interface.3

The relational database schema is a very simple and direct implementation
of the algebraic model of argument graphs presented in Section 3. It consists of
tables for statement nodes, arguments nodes, premises, and metadata. There
are additional tables for storing poll responses and managing translations of
text, to support multilingual application scenarios.

The database schema is independent of the argumentation schemes used to
reconstruct arguments. A high-level declarative language for representing ar-
gumentation schemes is provided. A selection of about 20 of Doug Walton’s
schemes [25] have been modeled using the language, in collaboration with him.
We have also used the language to represent versions of the schemes for value-
based practical reasoning and arguments from a credible source developed by
Trevor, Katie and Adam during the course of the IMPACT project [3]. The
Carneades system is preconfigured to use these schemes, but they can be mod-
ified, extended or replaced with others. Restarting the web application is suf-
ficient to reconfigure the system to use the new schemes. Existing argument
graphs are not invalidated when the schemes are modified. Carneades includes
a web application for editing argument graphs, which uses the argumentation
schemes to generate forms for entering and modifying arguments. The editor can
be used to update existing arguments to correctly instantiate modified schemes.
A tool is planned, but not yet implemented, for checking arguments against the
schemes and reporting errors.

The premises and conclusions of argumentation schemes are represented at a
fine-level of granularity, at the level of a higher-order predicate logic. Premises
are labelled by their roles in the scheme, e.g. “major” or “minor”. All of this
detail, including the identifiers of the schemes applied, is preserved in the re-
lational database representation. Statements are represented in the database
both in natural language and formally, in predicate logic. A logic-based query

3Carneades is open source software, freely available for downloading from http://
carneades.github.com.

9

http://carneades.github.com
http://carneades.github.com


language is provided for retrieving statement nodes from the database which
unify with (match) the query.

The application layer is implemented in a functional programming language,
Clojure, which is compiled to byte codes for the Java Virtual Machine. A purely
functional, declarative style has been used, with no mutable state and side ef-
fects only for input/output. The application layer is packaged as a Web service
which can be accessed via HTTP. An inference engine is provided. It can be used
to automatically generate argument graphs by applying argumentation schemes
to sets of predicate logic formulas (“semantic models”). We have demonstrated
this feature by reconstructing Liverpool’s traffic law example [1]. Finally, the
application layer also includes an argument graph evaluator, which uses a map-
ping to Dung abstract argument frameworks to label (in, out or undecided) the
statement and argument nodes. Grounded semantics is currently used, but the
system has been designed in a modular way to allow future implementations of
other semantics to be selected at run-time.

The user interface, illustrated in the next section, is a Rich Internet Applica-
tion (RIA), implemented in JavaScript and, more recently, ClojureScript. The
client communicates with the Carneaedes Web service via HTTP and exchanges
data using JSON. The style of the user interface was designed and implemented
by the company User Interface Design (UID), a partner in the IMPACT project.

The entire code of the server-side of the system, including a relational
database engine (H2) and a web server (Jetty), is packaged as a single, double-
clickable JAR file. The system is very simple to install, requires no configuration
or administration, and can be used stand-alone, on a personal computer, with-
out an Internet connection.

5 User Interface
This section presents the user interface of the polling tool and illustrates how it
is used.

The first page of the polling tool provides an overview of the features of the
tool and explains the following procedure for using the tool:

1. Log in using a pseudonym to protect the respondent’s privacy.

2. Read an introduction to the topic of the debate and select an issue of
interest.

3. Answer a series of survey multiple-choice questions about the selected
issue, asking whether the respondent agrees or disagrees with claims made
in arguments.

4. View a summary of the questions and responses. The respondent is pro-
vided with an opportunity to change his or her answers.

5. Compare the respondent’s opinions with those of the authors of the source
documents reconstructed by analysts in the argument graph.

10



The procedure is flexible and the respondent is in control. The procedure can
be stopped at any time, and continued later if desired. Moreover, the respondent
can jump backwards or forwards to any step in the procedure.

5.1 Question Types
Three types of questions are asked during the poll. The questions are gener-
ated automatically by traversing, depth-first, the nodes of the argument graph.
Figure 2 shows the form displayed the first time the respondent is asked for his
opinion about some statement.

Figure 2: First Time Question About a Claim

If the respondent first wants to see the arguments before answering, and
thus chooses the third alternative, then the question will be put aside and he
will be shown questions about the arguments pro and con this statement. As
illustrated in Figure 3, this second type of question shows the argument, quoting
the formulations of the argument in the source texts, and asks for each premise
whether the respondent agrees or disagrees with the premise, or, if there are
arguments in the graph about the premise, whether he would like to first see
the arguments (not shown in this example, since there are no arguments in
the graph for these premises). Note also that the default answer, “Skip this
question”, has not been changed in this example.

After the respondent has seen the arguments, to the depth and level of detail
chosen by his answers to the questions, he will be asked again for his opinion of
the statement. (Recall that users can control the depth of the survey by skipping
questions or asking to see the arguments before answering questions.) This
second time, however, the question is formulated somewhat differently. He will
first be asked to weigh arguments pro and con the statement. The respondent
can easily adjust the relative weights of these arguments, using sliders, as shown
in the figure. The user is asked to weigh an argument only if he has agreed with
all of its premises, since we expect that it would be too confusing for most users
to ask them to weigh arguments as if they accepted them, when they do not. In
the example there is only one argument. Weighing the argument can be useful
nonetheless, since the weights entered by all respondents are averaged to resolve

11



Figure 3: Questions About the Premises of an Argument

12



conflicts among rebuttals when evaluating the argument graph, using weights
and proof standards [19, 20].

Figure 4: Second Time Question About a Claim

After the arguments have been weighed, the respondent is asked, at the
bottom of the same page, whether he now agrees or disagrees with the claim.

5.2 Checking and Changing Answers
To check or change answers the respondent can go to the “summary” page,
shown in Figure 5, listing all the claims with which the respondent has agreed
or disagreed, showing the opinion entered and providing an opportunity to make
changes. The sixth item in the list shows the user’s position on the main claim,
that a stand-alone statutory instrument should be used for standardizing the
handling orphaned works. The user has agreed with this claim.

5.3 Comparing Opinions
Finally, the respondent can compare his opinions with those reconstructed from
the source documents. The comparison page (Figure 6) shows the source doc-
uments grouped into several categories, ordered by how much the opinions ex-
pressed in the documents have in common with the opinions expressed by the
respondent in his answers to the poll questions. In each category, full references

13



Figure 5: A Summary Page

14



to the documents are provided (author, title, etc). The title includes a hyperlink
to the source of the document on the Web.

Figure 6: Opinion Comparison Page

Here is brief explanation of how the comparison is computed. All of the
arguments modeled in the argument graph are tagged with the keys of source
documents in which the argument has been made, from the corpus of source
documents used by the analysts to construct the graph. These documents do
not merely cite or quote the argument but rather express agreement with the
argument, by claiming that the premises and the conclusion of the argument
are true. Since the arguments are linked to their conclusion and premises in the
argument graph, it is easy to compute from the source metadata of arguments
the set of claims, i.e. statements claimed to be true or false, in each source
document. These claims are then compared to the respondent’s opinions. The
similarity of opinions is currently measured by the percentage of claims in the
document with which the respondent has expressed agreement, but other metrics
are possible, such as “Euclidean distance” [24, pp. 9–15]. For every claim, the
opinion of the user matches the position of a comment only if they both agree,
disagree or have expressed no opinion about the claim. For example, if an
argument graph contains 100 claims (statements) and the opinion of the user
matches 20 of the opinions of the comment, then the comment is assigned a score
of 20%. The comments are grouped into five qualitative categories: very little
in common (< 20%), little in common (20-39%), some in common (40-59%),
much in common (60-79%), and very much in common (80-100%).

6 Discussion
The Carneades polling tool presented here, which is fully implemented, has
been inspired by the Structured Consultation Tool Trevor Bench-Capon and
his Liverpool colleagues Katie Atkinson and Adam Wyner developed in the

15



European IMPACT project [1, 26]. The SCT, in turn, builds on prior work at
Liverpool by Katie, Trevor and Peter McBurney on the Parmenides system [2].
Our aim in developing and implementing the Carneades polling tool was not
specifically for the purpose of this Festscrift, to allow comparison with Trevor’s
work, but rather with the aim to develop a practical tool meeting identified user
requirements. This work was mostly completed before receiving the invitation
to make a contribution to this Festschrift.

We have aimed to preserve all of the features of Parmenides and the SCT,
but with a more flexible design supporting further use cases and enabling a
tighter integration with tools for argument reconstruction, visualization and
evaluation. These additional use cases include the provision of support for
consultations about any argument, independent of the argumentation schemes
used to reconstruct the arguments, the collection of feedback on the arguments
put forward on all sides of a debate, rather than only the arguments of a single
position of one party, and the ranking of stakeholders by the extent to which
they share opinions. We believe these goals have been achieved with the polling
tool presented here.

Argument graphs provided the key for this increased flexibility, by enabling
the code for generating and conducting polls to be decoupled from the code
for using argumentation schemes to (re)construct arguments. The SCT repre-
sents every argumentation scheme with a separate table in a relational database.
Modifying the schemes, or extending the system to support further schemes, re-
quires modifications to the database schema, the middleware (application layer)
and the user interfaces, invalidating existing databases using prior versions of
the schemes. All of these modifications are labor intensive and require special-
ist computer programming skills. Our approach, on the other hand, provides
a high-level declarative programming language for specifying argumentation
schemes, facilitating experimentation with various formulations of argumenta-
tion schemes, by humanities scholars as well as computer scientists, without
requiring technical computer-science skills or modifications to the implemen-
tation of the polling tool. We find this feature especially useful, because we
consider argumentation schemes to be an active field of research, with many
schemes not yet well understood and waiting to be adequately formalized.

7 Acknowledgments
This work was partially funded by the European IMPACT project (FP7-IST-
247228), 2010-2012. Carneades was conceived and designed by the author, with
contributions by Douglas Walton and Henry Prakken. The current version of
Carneades was programmed by Pierre Allix, Stefan Ballnat and the author.

16



References
[1] K. Atkinson, T. Bench-Capon, D. Cartwright, and A. Wyner. Semantic

Models for Policy Deliberation. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Law (ICAIL 2011), pages
81–90, New York, NY, USA, 2011. ACM Press.

[2] K. Atkinson, T. Bench-Capon, and P. McBurney. PARMENIDES: facilitat-
ing deliberation in democracies. Artificial Intelligence and Law, 14(4):261–
275, 2006.

[3] K. Atkinson, A. Wyner, and T. Bench-Capon. Report on the structured
consultation tool (sct). IMPACT Deliverable D5.2, University of Liverpool,
2012.

[4] M. C. Beardsley. Practical Logic. Prentice Hall, New York, 1950.

[5] T. Bench-Capon. Persuasion in Practical Argument Using Value-Based
Argumentation Frameworks. Journal of Logic and Computation, 13(3):429–
448, 2003.

[6] T. J. Bench-Capon. Support for Policy Makers: Formulating Legislation
with the Aid of Logical Models. In Proceedings of the First International
Conference on Artificial Intelligence and Law, pages 181–189, Boston, 1987.

[7] T. J. Bench-Capon, G. O. Robinson, T. Routen, and M. Sergot. Logic Pro-
gramming for Large Scale Applications in Law: A Formalisation of Sup-
plementary Benefit Legislation. In Proceedings of the First International
Conference on Artificial Intelligence and Law, pages 190–198, Boston, 1987.

[8] T. J. M. Bench-Capon, P. E. S. Dunne, and P. H. Leng. Interacting with
Knowledge Systems Through Dialogue Games. In Proceedings of the 11th
Annual Conference on Expert Systems and their Applications (vol. 1), pages
123–130, Avignon, 1991.

[9] T. J. M. Bench-Capon, P. E. S. Dunne, and P. H. Leng. A Dialogue Game
for Dialectical Interaction with Expert Systems. In J. C. Rault, editor,
Proceedings of AVIGNON-92 (vol. 1), Nanterre, 1992.

[10] F. Bex, T. Gordon, J. Lawrence, and C. Reed. Interchanging arguments
between Carneades and AIF. In B. Verheij, S. Szeider, and S. Woltran, ed-
itors, Computational Models of Argument – Proceedings of COMMA 2012,
pages 390–397, Amsterdam, 2012. IOS Press.

[11] C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,
M. South, G. Vreeswijk, and S. Willmott. Towards an argument interchange
format. Knowledge Engineering Review, 21(4):293–316, 2006.

[12] P. M. Dung. On The Acceptability Of Arguments And Its Fundamental
Role In Nonmonotonic Reasoning , Logic Programming And N-Persons
Games. Artificial Intelligence, 77:321–357, 1995.

17



[13] J. B. Freeman. Dialectics and the Macrostructure of Arguments: A Theory
of Argument Structure. Walter de Gruyter, Berlin / New York, 1991.

[14] T. F. Gordon. The Role of Exceptions in Models of the Law. In H. Fiedler
and R. Traunmüller, editors, Formalisierung im Recht und Ans{ä}tze juris-
tischer Expertensysteme, pages 52–59. J. Schweitzer Verlag, Munich, 1986.

[15] T. F. Gordon. Oblog-2: A Hybrid Knowledge Representation System for
Defeasible Reasoning. In Proceedings of the First International Conference
on Artificial Intelligence and Law, pages 231–239, Boston, 1987.

[16] T. F. Gordon. Some Problems with Prolog as a Knowledge Representation
Language for Legal Expert Systems. In C. Arnold, editor, Yearbook of
Law, Computers and Technology, pages 52–67. Leicester Polytechnic Press,
Leicester, England, 1987.

[17] T. F. Gordon. The Pleadings Game; Formalizing Procedural Justice. In
Proceedings of the Fourth International Conference on Artificial Intelli-
gence and Law, pages 10–19. ACM Press, New York, 1993.

[18] T. F. Gordon. Foundations of Argumentation Technology – Summary of
Habilitation Thesis. PhD thesis, Technical University of Berlin, 2009.

[19] T. F. Gordon, H. Prakken, and D. Walton. The Carneades Model of Ar-
gument and Burden of Proof. Artificial Intelligence, 171(10-11):875–896,
2007.

[20] T. F. Gordon and D. Walton. Proof Burdens and Standards. In I. Rahwan
and G. Simari, editors, Argumentation in Artificial Intelligence, pages 239–
260. Springer-Verlag, Berlin, Germany, 2009.

[21] D. Leffingwell. Agile Software Requirements: Lean Requirements Practices
for Teams, Programs and the Enterprise. Addison-Wesley, 2010.

[22] C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric. University of
Notre Dame Press, Notre Dame, 1969.

[23] H. Prakken. An abstract framework for argumentation with structured
arguments. Argument & Computation, 1:93–124, 2010.

[24] T. Segaran. Programming Collective Intelligence. O’Reilly, 2007.

[25] D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge
University Press, 2008.

[26] A. Wyner, K. Atkinson, and T. Bench-Capon. Towards a Structured Online
Consultation Tool. In Electronic Participation: Proceedings of Third IFIP
WG 8.5 International Conference (ePart 2011), Lecture Notes in Computer
Science (LNCS), pages 286–297, Berlin, 2011. Springer.

18


	Introduction
	Requirements Analysis
	Argument Graphs
	Design and Implementation
	User Interface
	Question Types
	Checking and Changing Answers
	Comparing Opinions

	Discussion
	Acknowledgments

