Software Engineering for Research on Legal
Argumentation

Thomas F. Gordon

Abstract
Research on legal argumentation is interdisciplinary, with contributions
from several academic disciplines, including computer science. This paper
presents an overview of some software engineering methods from computer
science and discusses their potential contribution to the study of legal
argumentation.

Introduction

Research on legal argumentation is interdisciplinary, with contributions from
legal theory, philosophy, computer science and linguistics, among other academic
disciplines. Artificial intelligence (AI) is another interdisciplinary field of study
involving these same academic discipines, but with a focus on computational
models of cognitive processes, including but not limited to argumentation. Legal
theory contributes to Al via the interdisciplinary field of AI and Law, which not
only applies Al results to legal tasks but also uses legal tasks to develop innnova-
tive AI methods, including contributions to case-based reasoning, nonmonotonic
logic and computational models of argument. In return, computational models
developed in AI and Law have shed new insight on legal methods, including legal
argumentation, which legal scholars have found interesting and useful (Sartor
2005).

Here we discuss the use of software engineering methods, developed in computer
science, for research on legal argumentation and make some preliminary conjec-
tures about contributions to research on legal argumentation made possible by
these methods. What does software engineering have to offer the study of legal
reasoning? What kinds of insights onto legal argumentation are facilitated by
software engineering methods?

Overview of Software Engineering Methodology

It would be misleading to speak of the software engineering methodology, since
several have been developed and are used in practice. But the distinctions



between these various methodologies are not important for our purposes here,
since they have much in common and their differences are presumably minor
details compared to the difference between their common features and the
methodologies of other disciplines.

The traditional software engineering methodology, still used by some, is the
waterfall methology. It is a process model consisting of several phases:

¢ Requirements Analysis
e Design

¢ Implementation

e Verfication, and

e Maintenance

The process is mostly sequential, from one phase to the next, but the model
does allow for some feedback from later phases to earlier phases. For example,
problems arising in the design phase can cause requirements to be revised.

Currently fashionable is agile software development, such as the Fowler’s
lightweight development process (Fowler and Scott 2000) or the Scrum
methodology (Sims and Johnson 2011). Rather than trying to design the whole
system before beginning work on the implementation, the development process
is broken down into smaller parts, in a cyclic process. In each iteration of the
process, called a sprint, a small number of requirements are selected from a
backlog of requirements, and system modifications are designed, implemented,
tested, and documented to meet these requirements. Each sprint produces
a working, useful system, mitigating the risks of the waterfall model, where
no system exists until much later in the process. The phases of the waterfall
model remain important when applying agile development methods but occur
repeatedly, in each iteration (sprint), rather than only once per project.

Let us try to summarize each phase of the development cycle, starting with
requirements analysis. Here too various methods exist. Let us focus on agile
requirements analysis methods (Leffingwell 2010). Requirements analysis takes
place in collaboration with domain experts, potential users and, in particular,
the customer, if there is one. For example, when developing legal applications,
software engineers would work with lawyers. Requirements are captured by
defining roles, personas, user stories, scenarios and acceptance tests. Roles
classify the different kinds of users of a system. For a legal application these
might be lawyers, judges, clerks, clients and so on. Personas are more concrete
descriptions of fictional persons or characters in each of the roles, to help the
developers to have a better understanding of the skills, interests and attitudes
of typical users. Users stories describe particular requirements by instantiating
a template of the following form: As a role, I want to be able to perform action,
so that I can goal. For example: As a lawyer, I want to be able interpret the
arguments in court opinions, so that I can apply the decisions to build arguments



in my cases.! Scenarios are more concrete illustrations of interactions among
several users stories. In scenarios, users stories are instantiated with personas
and more particular actions and goals and then linked together into sequences
of actions. Finally, acceptance tests are defined for each user story, with the
aim of operationalizing the evaluation of whether or not the user story has
been correctly and completely implemented. We will come back to the topic of
evaluation below, when discussing the verification and validation of software.

The users stories collected during the requirements phase are entered into a
database, called the backlog. At the beginning of each sprint, users stories to be
implemented during the sprint are selected from the backlog. Work then begins
by next designing the system to meet these selected requirements. A variety of
design methods exist, ranging from informal, such as user-interface mockups, to
semi-formal, such as Unified Modeling Language (UML) diagrams (Fowler and
Scott 2000), to formal methods, using mathematical models, simulation, formal
logic and proof assistants (Chlipala 2013). Semi-formal methods, using UML,
are the most widely used in practice currently.

After the design is ready, implementation can begin. This is where computer
programming, unit testing and debugging comes into play. It may be appropriate
to quickly implement a first version of the system, using rapid protoyping with
high-level programming languages. After the prototype has been validated the
system may be reimplemented for efficiency reasons, if necessary, using a lower-
level programming language.

Often, however, this optimization effort is not worth the required effort.

The sprint is not complete until the new version of the system has been verified,
validated and documented. Verification is the process of checking whether the
system correctly implements the design. When proof assistants are used to
design the system using formal methods, verification is assured, since these
assistants provide tools for automatically generating correct implementations
from the formal specifications. Validation is the process of checking whether the
implemented system meets its requirements. This is a more open issue, which
cannot be completely automated. The acceptance tests developed during the
requirements analysis phase facilitate a somewhat more objective evaluation,
since the tests were developed before the system was designed or implemented.
Without acceptance tests, it might be difficult to resist the temptation to
develop validation criteria which ones knows are satisfied by system. Thus
acceptance tests play a role in software engineering similar to double-blind and
other safeguards of experimental science methodologies.

Hnterestingly, the template for users stories is similar to the argumentation scheme for
value-based practically reasoning.(Atkinson and Bench-Capon 2007)



Discussion

Let me now try to address the issues raised in the workshop synopsis, from the
perspective of software engineering.

The first question is whether legal argumentation requires its own research goals
and methods. Surely legal argumentation has its own goals. One of the purposes
of requirements analysis is to identify and articulate these goals. What kinds
of actors (roles) use legal argumentation and for what purposes? What are
the interests of the actors in these various roles and what are they trying to
achieve? But does research on legal argumentation require its own methods?
Or is it sufficient to apply existing methods from the various scientific and
engineering discplines participating in the study of legal argumentation? From a
software engineering perspective, legal argumentation is an application domain.
I would say that the need for particular methods has yet to be articulated or
demonstrated. Research on legal argumentation in the field of Al and Law
has applied methods from law and computer science, including the software
engineering methods summarized here. Al and Law has developed innovative
theories about legal reasoning, and methods and tools to facilitate legal reasoning,
but has not, to my knowledge, developed new research methodologies. Since the
field is interdisciplinary, some methods may seem new and innovative to some
people working in field, because they are methods from other disciplines outside
of their own.

The second question asks which methodological ideas, if any, from AI and Law,
philosophy of argument and legal theory may be inspiring or instructive to the
other disciplines. Again, Al and Law is itself an interdisicplinary field of study,
like legal argumentation. Thus I would prefer to reformulate the question to
ask what computer science, philosophy and legal theory can learn from each
other regarding methodologies. The legal domain has been a valuable source
of problems, examples and requirements for computer scientists working on
computational models of argument in the field of Artificial Intelligence and Law.
But it is doubtful whether computer science has been inspired by methods from
other disciplines working in the field, such as legal theory. More generally, 1
think each discipline involved in the field has tended to focus on applying its own
methodologies to the subject matter, without tying to evolve these methodologies
further due to influences from other disciplines participating in the field. On
the contrary, disciplines tend to be very conservative about perserving their
methodologies. Indeed, disciplines tend to define themselves as much by their
particular methodologies as by their domain or object of study. Presumably
this is also a consequence of the various aptitudes and competencies required by
particular methodologies, which tend to attract people to one discipline rather
than another. Lawyers, for example, tend to have strong natural language skills,
as required in all humanities disciplines, while abhoring mathematics and formal
analytical methods. The reverse is true for computer scientists, typically. But
the question may be understood as asking not whether the disciplines have in fact



been inspired by methodologies of other disciplines in the field, but whether some
discipline has methodological ideas which could inspire some other discipline. I
am skeptical about the potential to export methodologies from one discipline
to another, mainly due to the vastly different sets of skills and competencies
required to learn and apply these methodologies. I am more optimistic about
the potential of interdisciplinary collaboration, where each discipline applies its
own methodologies.

The third question is whether legal argumentation should be analyzed from first
principles, top-down, or begin with more concrete, real-life examples, bottom-up.
Software engineering offers a third, intermediate path. The roles, personas, user
stories and scenarios defined during requirements analysis are neither abstract
principles nor concrete examples. Both principles and examples may be used
during requirements analysis, but the resulting requirements are more specific
than principals and more generic than examples. Perhaps this is a strength of
the software engineering approach. It provides a kind synthesis, integrating both
general principles and concrete examples.

The fourth question asks about the relative benefits of formal and informal
methods for studing legal argumentation. Software engineering applies a variety
of methods, ranging from informal to formal. Different methods are appropriate
for different tasks. Informal or semi-formal methods facilitate collaboration
between computer scientists and domain experts, especially when the domain
experts are from disciplines, such as law, with an adversion to formal methods.
Formal methods are useful, even necessary, for proving properties of designs
(specifications) and verifying the correctness of implementations. But formal
methods are less useful, if at all, for validating that the resulting system meets
actual requirements. Presumably this general principal applies also to the study
of legal argumentation. Both informal and formal methods serve important
functions. Neither can supplant the other.

The fifth question asks how the presumptions of the disciplines participating in
the field of legal argumentation determine the scientific method and obtained
results of the field. I would disagree with what seems to be a presupposition
of this question, that the interdisciplinary field of legal argumentation has a
scientific method derived from the methodologies of its participating disciplines.
Rather, each discipline applies its own methodology, separately. Surely, the
results obtained are affected by the methodologies applied. The methodology
of a discipline is based on its own epistimological presumptions. Whatever the
strengths of these presumptions, they also lead to a kind of blindness, which
make potentially interesting results impossible to find.

The sixth and final question asks about descriptive (empirical) and normative
models. Physics is the prototypical empirical science and logic the prototypical
normative science. But both strive for universal truths, not solutions to practical
problems. Conversely, software engineering and the humanities, including the
law, have in common the practical goal of helping people to find their way in
the world, to achieve their goals, satisfy their interests, and lead a meaningful



life, not just to describe the world or articulate universal truths. Software
engineering applies and integrates both normative and empirical methods. The
choice of methods is based on their effectiveness for achieving goals and satisfying
requirements. Which methods are appropriate depends on the task. Formal
methods, which are normative, are needed to simulate and verify system designs,
to derive or prove their properties. Empirical methods are needed to capture
requirements and to validate whether systems meet these requirements. But
these empirical methods have a normative side: requirements are identified in
collaboration with the “customer”. And acceptance tests are negotiated with
the same customer. The acceptance tests are similar to a contract. Indeed, they
may actually be part of a contract. Requirements and acceptance tests express
normative conditions which the system must satisfy. If the system is a work for
hire, failure to satisfy these conditions may be a breach of contract. Whereas
in scientific disciplines, such as physics and logic, the normative standards are
set by “high priests” of the discipline themselves, in engineering fields, such as
software engineering, the standards are ultimately set by the market, by users
and customers. Interestingly, these two classes of arbiters can converge in the
field of legal argumentation, when philosophers or legal theorists play the role of
the customer, defining the requirements and acceptability tests, and software
engineers apply the tools of their trade to develop models and systems meeting
these requirements and passing these tests.

References

Atkinson, Katie, and Trevor J. M. Bench-Capon. 2007. “Practical Reasoning as
Presumptive Argumentation Using Action Based Alternating Transition Systems.”
Artificial Intelligence 171 (10-15): 855-74.

Chlipala, Adam. 2013. Certified Programming with Dependent Types — a
Pragmatic Introduction to the Coq Proof Assistant. MIT Press.

Fowler, Martin, and Kendall Scott. 2000. UML Distilled — A Brief Guide to the
Standard Object Modeling Language. 2nd ed. Addison Wesley Longman, Inc.

Leffingwell, Dean. 2010. Agile Software Requirements: Lean Requirements
Practices for Teams, Programs and the Enterprise. Addison-Wesley.

Sartor, Giovanni. 2005. “Legal Reasoning: A Cognitive Approach to the Law.” In
A Treatise of Legal Philosophy and General Jurisprudence, edited by E Pattaro,
H Rottleuthner, R A Shiner, A Peczenik, and G Sartor, 5:844. Springer.

Sims, Chris, and Hillary Louise Johnson. 2011. The Elements of Scrum. Dy-
maxicon.



	Introduction
	Overview of Software Engineering Methodology
	Discussion
	References

