
Rules and Norms:
Requirements for Rule Interchange Languages

in the Legal Domain

Thomas F. Gordon1, Antonino Rotolo2, and Guido Governatori3

1 Fraunhofer FOKUS, Berlin, Germany
thomas.gordon@fokus.fraunhofer.de

2 CIRSFID, University of Bologna, Bologna, Italy
antonino.rotolo@unibo.it

3 NICTA, Queensland Research Laboratory, Brisbane, Australia
guido.governatori@nicta.com.au

Abstract. In this survey paper we summarize the requirements for rule inter-
change languages for applications in the legal domain and use these require-
ments to evaluate RuleML, SBVR, SWRL and RIF. We also present the Legal
Knowledge Interchange Format (LKIF), a new rule interchange format developed
specifically for applications in the legal domain.

1 Introduction

An extensive research has been devoted in the last years for developing rule languages
in the legal domain. Interesting efforts has been carried out especially in the field of e-
contracting, business processes and automated negotiation systems. This led to devise
new languages, or adjust existing ones, specifically designed for documenting and mod-
eling the semantics of business vocabularies, facts, and rules. Significant examples are
SBVR [39], the case handling paradigm [43], OWL-S [29], ContractLog [30], Sadiq
et al.’s constraint specification framework [37], the Web Service Modeling Ontology
(WSMO) [33], the ConDec language [31], PENELOPE [14], and RuleML for business
rules [21, 16].

But legal rules are not only pervasive in modeling e-transactions—where formal-
izing and handling legal rules and contract clauses is required for providing tools to
support legally valid interactions and/or to legally ground contractual transactions—but
their sound and faithful representation is obviously crucial for representing legislative
documents, regulations, and other sources of law (for instance, in the domains of e-
governance and e-government).

Since the seminal formalization of the British Nationality Act as a logic program
[41], the AI & Law community has devoted an extensive effort for modeling many
aspects of legal rules and regulations4. However, there are still a few works which ad-
dress the problem of devising rule interchange languages, properly speaking, for the

4 The interested reader may consult a large number of relevant works published in the Artificial
Intelligence and Law journal and in the proceedings of conferences such as ICAIL and JURIX.

legal domain. LKIF is probably the first systematic attempt in this regard (LKIF will be
discussed here in Section 3.5).

Significant experiences for representing legislative documents throughout XML
languages, for instance, are CEN MetaLex [7], SDU BWB (see [27]), LexDania (see
[27]), NormeinRete [26], AKOMA NTOSO [2]. Other XML standards in legal domain
are CHLexML [10], EnAct [3], Legal RDF [28], eLaw (see [27]), Legal XML (see
[27]), LAMS [24], JSMS (see [27]), and UKMF (see [27]). Much of these XML-based
attempts are ambitious, valuable and effective. Yet, they mostly focused on representing
legal documents rather than modeling directly legal rules. In addition, some are focused
on specific application areas, others model a few aspects of the many concerns that exist
in reality, or, if developed in order to be sufficiently general, exhibit some limitations
since they are not based on robust or comprehensive conceptual models for representing
legal rules to be applied in the legal domain (for a detailed evaluation of modeling, e.g.,
legislation, see [27]).

In general, many of the drawbacks affecting many existing languages are perhaps
due to the fact that there has not yet been an overall and systematic effort to establish
a general list of requirements for rule interchange languages in the legal domain or
because there is not yet an agreement in particular among the practitioners working in
this field. This survey paper is meant to offer a list of minimal requirements to a large
audience of computer scientists, legal engineers and practitioners who are willing to
model legal rules. These requirements are then discussed with regard to some existing
rule interchange languages.

Note that a remarkable and additional difficulty is that it is sometimes not trivial to
adjust or extend existing standards for rule interchange languages when we need to use
them in the legal domain. Indeed, although the legal domain has several features which
are shared by other domains, some aspects are characteristic of the law. Many legal
sources, such as statutes, regulations and case law, need to be interpreted to identify
relevant legal rules and these rules generally will have complex priority and exception
relationships which pose problems for representing them adequately in computational
models [6, p. 9].

The layout of the paper is as follows. In Section 2 we provide a rather comprehen-
sive list of requirements for devising rule interchange languages. The subsequent sec-
tions discuss these requirements to evaluate RuleML, SBVR, SWRL, RIF, and LKIF.
Some brief conclusions end the paper.

2 Requirements

The law is a complex phenomenon, which can be analyzed into different branches ac-
cording to the authority who produces legal norms and according to the circumstances
and procedures under which norms are created. But, independently of these aspects, it
is possible to identify some general features that norms should enjoy.

First of all, it is widely acknowledged in legal theory and AI & Law that norms have
basically a conditional structure like [23, 38]

if A1, . . . ,An then B (1)

where A1, . . . ,An are the applicability conditions of the norm and B denotes the legal
effect which ought to follow when those applicability conditions hold5.

This very general view highlights an immediate link between the concepts of norm
and rule. However, there are many types of rules. The common sense, dictionary mean-
ing of rule is “One of a set of explicit or understood regulations or principles governing
conduct within a particular sphere of activity.” [1]. In classical logic, rules can be infer-
ence rules or material implications. In computer science, rules can be production rules,
grammar rules, or rewrite rules.

When we use the term ‘rule’ in the legal field, we usually mean rule in the regulatory
sense. But rules express not only regulations about how to act. For example, von Wright
[45] classified norms into the following main types (among others):

1. determinative rules, which define concepts or constitute activities that cannot exist
without such rules. These rules are also called in the literature ‘constitutive rules’.

2. technical rules, which state that something has to be done in order for something
else to be attained;

3. prescriptions, which regulate actions by making them obligatory, permitted, or pro-
hibited. These norms, to be complete, should indicate

– who (the norm-subjects)
– does what (the action-theme)
– in what circumstances (the condition of application) and
– the nature of their guidance (the mode).

Notice that the notion of norm proposed by von Wright is very general and extends well
over the notion of norm in legal reasoning; but in some cases the components of a rule
have to modified. For example, legal systems can have provisions to handle changes in
the systems itself. Thus, it is possible to have norms about how to change other norms.
These rules have again a prescriptive character, but we have to adjust the element, in
particular these rules should specify, what (the content to be modified), how (the new
content), in what circumstances, and the nature of the modifications (e.g.,, substitution,
derogation, abrogation, annulment,)

Many of these aspects have been acknowledged in the field of artificial intelligence
and law, where there is now much agreement about the structure and properties of rules
[15, 32, 22, 44, 38]. Important requirements for legal rule languages from the field of AI
& Law include the following:

Isomorphism [5]. To ease validation and maintenance, there should be a one-to-one
correspondence between the rules in the formal model and the units of natural lan-
guage text which express the rules in the original legal sources, such as sections
of legislation. This entails, for example, that a general rule and separately stated
exceptions, in different sections of a statute, should not be converged into a single
rule in the formal model.

5 Indeed, norms can be also unconditioned, that is their effects may not depend upon any an-
tecedent condition. Consider, for example, the norm “everyone has the right to express his or
her opinion”. Usually, however, norms are conditioned. In addition, unconditioned norms can
formally be reconstructed in terms of (1) with no antecedent conditions.

Reification [15]. Rules are objects with properties, such as
Jurisdiction. The limits within which the rule is authoritative and its effects are

binding (of particular importance are spatial and geographical references to
model jurisdiction).

Authority [32]. Who produced the rule, a feature which indicates the ranking sta-
tus of the rule within the sources of law (whether the rule is a constitutional
provision, a statute, is part of a contract clause or is the ruling of a precedent,
and so on).

Temporal properties [19]. Rules usually are qualified by temporal properties,
such as:
1. the time when the norm is in force and/or has been enacted;
2. the time when the norm can produce legal effects;
3. the time when the normative effects hold.

Rule semantics. Any language for modeling legal rules should be based on a precise
and rigorous semantics, which allows for correctly computing the legal effects that
should follow from a set of legal rules.

Defeasibility [15, 32, 38]. When the antecedent of a rule is satisfied by the facts of a
case, the conclusion of the rule presumably holds, but is not necessarily true. The
defeasibility of legal rules breaks down into the following issues:
Conflicts [32]. Rules can conflict, namely, they may lead to incompatible legal

effects. Conceptually, conflicts can be of different types, according to whether
two conflicting rules

– are such that one is an exception of the other (i.e., one is more specific than
the other);

– have a different ranking status;
– have been enacted at different times;

Accordingly, rule conflicts can be resolved using principles about rule priori-
ties, such as:

– lex specialis, which gives priority to the more specific rules (the excep-
tions);

– lex superior, which gives priority to the rule from the higher authority (see
‘Authority’ above);

– lex posterior, which gives priority to the rule enacted later (see ‘Temporal
parameters’ above).

Exclusionary rules [32, 38, 15]. Some rules provide one way to explicitly under-
cut other rules, namely, to make them inapplicable.

Contraposition [32]. Rules do not counterpose. If some conclusion of a rule is not
true, the rule does not sanction any inferences about the truth of its premises.

Contributory reasons or factors [38]. It is not always possible to formulate precise
rules, even defeasible ones, for aggregating the factors relevant for resolving a le-
gal issue. For example: “The educational value of a work needs to be taken into
consideration when evaluating whether the work is covered by the copyright doc-
trine of fair use.”

Rule validity [19]. Rules can be invalid or become invalid. Deleting invalid rules is not
an option when it is necessary to reason retroactively with rules which were valid
at various times over a course of events. For instance:

1. The annulment of a norm is usually seen as a kind of repeal which invalidates
the norm and removes it from the legal system as if it had never been enacted.
The effect of an annulment applies ex tunc: annulled norms are prevented from
producing any legal effects, also for past events.

2. An abrogation on the other hand operates ex nunc: The rule continues to apply
for events which occured before the rule was abrogated.

Legal procedures. Rules not only regulate the procedures for resolving legal conflicts
(see above), but also for arguing or reasoning about whether or not some action or
state complies with other, substantive rules [16]. In particular, rules are required for
procedures which
1. regulate methods for detecting violations of the law;
2. determine the normative effects triggered by norm violations, such as repara-

tive obligations, namely, which are meant to repair or compensate violations6.
Normative effects. There are many normative effects that follow from applying rules,

such as obligations, permissions, prohibitions and also more articulated effects such
as those introduced, e.g., by Hohfeld (see [38]). Below is a rather comprehensive
list of normative effects [35]:
Evaluative, which indicate that something is good or bad, is a value to be opti-

mised or an evil to be minimised. For example, “Human dignity is valuable”,
“Participation ought to be promoted”;

Qualificatory, which ascribe a legal quality to a person or an object. For example,
“x is a citizen”;

Definitional, which specify the meaning of a term. For example, “Tolling agree-
ment means any agreement to put a specified amount of raw material per period
through a particular processing facility”;

Deontic, which, typically, impose the obligation or confer the permission to do a
certain action. For example, “x has the obligation to do A”;

Potestative, which attribute powers. For example, “A worker has the power to ter-
minate his work contract”;

Evidentiary, which establish the conclusion to be drawn from certain evidence.
For example, “It is presumed that dismissal was discriminatory”;

Existential, which indicate the beginning or the termination of the existence of a
legal entity. For example, “The company ceases to exist”;

Norm-concerning effects, which state the modifications of norms such as abroga-
tion, repeal, substitution, and so on.

Persistence of normative effects [20]. Some normative effects persist over time un-
less some other and subsequent event terminate them. For example: “If one causes
damage, one has to provide compensation.”. Other effects hold on the condition and
only while the antecedent conditions of the rules hold. For example: “If one is in a
public office, one is forbidden to smoke”.

Values [4]. Usually, some values are promoted by the legal rules. Modelling rules
sometimes needs to support the representation of values and value preferences,

6 Note that these constructions can give rise to very complex rule dependencies, because we can
have that the violation of a single rule can activate other (reparative) rules, which in turn, in
case of their violation, refer to other rules, and so forth.

which can play also the role of meta-criteria for solving rule conflicts. (Given two
conflicting rules r1 and r2, value v1, promoted by r1, is preferred to value v2, pro-
moted by r2, and so r1 overrides r2.)

An interesting question is whether rule interchange languages for the legal domain
should be expressive enough to fully model all the features listed above, or whether
some of these requirements can be meet at the reasoning level, at the level responsible
for structuring, evaluating and comparing legal arguments constructed from rules and
other sources. The following sections will consider this issue when discussing these
requirements in the context of some existing rule interchange formats: RuleML, SBVR,
SWRL, RIF, and LKIF.

3 Overview of Some Rule Interchange Languages

3.1 The Rule Markup Language (RuleML)

RuleML7 is an XML based language for the representation of rules. It offers facilities to
specify different types of rules from derivation rules to transformation rules to reaction
rules. It is capable of specifying queries and inferences in Web ontologies, mappings
between Web ontologies, and dynamic Web behaviours of workflows, services, and
agents [8]. RuleML was intended as the canonical web language for rules, based on
XML markup, formal semantics and efficient implementations. Its purpose is to allow
exchange of rules between major commercial and non-commercial rules systems on
the Web and various client-server systems located within large corporations to facilitate
business-to-customer (B2C) and business-to-business (B2B) interactions over the Web.

RuleML provides a way of expressing business rules in modular stand-alone units.
It allows the deployment, execution, and exchange of rules between different systems
and tools. It is expected that RuleML will be the declarative method to describe rules
on the Web and distributed systems [47]. RuleML arranges rule types in an hierarchical
structure comprising reaction rules (event-condition-action-effect rules), transformation
rules (functional-equational rules), derivation rules (implicational-inference rules), facts
(‘premiseless’ derivation rules, i.e., derivation rules with empty bodies), queries (‘con-
clusionless’ derivation rules, i.e., derivation rules with empty heads) and integrity con-
straints (consistency-maintenance rules). Each part of a rule is an expression that has
specific functions in the rule. The RuleML Hierarchy first directly branches out into two
categories: Reaction Rules and Transformation Rules. Transformation Rules then break
down into Derivation Rules, that, in turn, subdivide into Facts and Queries. Finally,
Queries break down into Integrity Constraints [36].

The way RuleML achieves flexibility and extensibility is based on the use and com-
position of modules. Each module is meant to implement a particular feature relevant
for a specific language or application (e.g., modules for various types of negation, for
example, classical negation, and negation as failures). Each module is intended to re-
fer to a semantic interpretation of the feature implemented in the module. However,

7 http://www.ruleml.org

RuleML does not have a mechanism to specify semantic structures on which to evalu-
ate elements of the language.

The key strength of RuleML is its extensibility. Thus despite that currently there is
no dialect specifically intended for the representation of legal rules a few works pro-
posed extension and interpretation for this area, in particular for the representation of
(business) contracts [21, 16, 18].

The contribution of [21] by Grosof was the proposal of adopting courteous logic
programming (a variant of defeasible logic) as an execution model for RuleML when
modeling the clauses of a contract. Accordingly, Grosof’s proposal meets the defeasi-
blity key requirement for modelling legal rules. Technically [21] uses derivation rules,
but then a courteous logic program implemented as Sweet Jess rules constitutes an ex-
ecutable specification, where the conclusion of a rule can be executed by a computer
program producing effects. Thus the approach bridges the gap among the various types
of rules in the RuleML family.

The limitation of [21] is that it does not consider normative effects (i.e., it is not
possible to differentiate between obligations and permissions). This limitation has been
addresses by Governatori [16], where defeasible logic is extended with the standard de-
ontic operators for obligations, permissions and prohibitions as well as a new special
deontic operator to model violations and penalties for the violations. Furthermore [16]
distinguishes between constitutive and prescriptive rules. It provides a RuleML compli-
ant DTD for representing the various deontic elements, and discusses various options
for the modelling of such notions in defeasible logic. [18] implements [16], in a Se-
mantic Web framework with support for RDF databases, to provide an environment to
model, monitor and perform business contracts.

The modelling approach proposed in [16] has proven successful for various legal
concepts (for example the legal notion of trust [34]) and it has been extended to cover
temporal aspects [20] norm dynamics [19], and it has been applied to the study of
business process compliance [17].

3.2 Semantics of Business Vocabulary and Business Rules (SBVR)

SBVR [39] is a standard proposed by the Object Management Group (OMG) for the
representation and formalisation of business ontologies, including business vocabular-
ies, business facts and business rules. The main purpose of SBVR is to give the basis for
formal and detailed natural language declarative specifications of business entities and
policies. It provides a way to represent statements in controlled natural language as logic
structures called semantic formulations. The formal representation is based on several
logics including first order logic, alethic modal logic and deontic logic, furthermore it
adopts model theoretic interpretations for semantic formulations. It is worth noticing
that the focus of SBVR is on modelling not providing a framework for executing the
rules.

The two most relevant and salient features of SBVR for the modelling of norms are
the introduction of deontic operators to represent obligations and permissions and the
use of controlled natural languages for modelling norms. These two features, combined
with the underlying formalisation, make SBVR a conceptual language able to capture

some of the requirements discussed in Section 2. In particular the requirements about
the structural isomorphism and the ability to capture some normative effects.

Unfortunately, the semantics for the deontic modalities is left underspecified and
the proposed interpretation suffers from some drawbacks to model norms. First of all it
assumes formulas like Barcan formula and its converse that allow for the permutation of
universal quantifiers and alethic modalities (i.e., 2∀xφ(x)≡ ∀x2φ(x)). The main con-
sequence for this is that it then forces the used of possible world models with constant
domains. While this assumption seems to be harmless, it has some important conse-
quences for the modelling of norms. Recent literature on deontic logic (see, among
others, [40]) agrees that normal deontic logics –that is logics that admit necessitation
(i.e., from ` φ derive ` Oφ , where O is the deontic modality for obligation)– are not
suitable to model norms. However, any deontic logic based on possible world semantics
with constant domains, and having at least one genuine obligation is a normal deontic
logic [46]. Thus an adequate model theoretic semantics for the deontic modalities seems
problematic. Another problem caused by standard deontic logic is that of contrary-to-
duty obligations, i.e., obligations arising from violations of other obligations. It is well
known that these cannot be handled properly by standard deontic logics [9]. However,
as [16] points out these are frequent in legal documents, and contracts in particular. [39]
recognises this limitation and the issue of handling this is left for future versions of the
specifications.

SBVR suggests the equivalence (φ →Oψ)≡O(φ → ψ) to transform semantic ex-
pressions having the deontic operator not as main operator into an expression where the
deontic operator is the main operator. The proposed transformation imposes additional
non-standard constraints on possible world semantics; moreover the proposed transfor-
mation poses some concerns on its conceptual soundness since typically the deontic
modality applies just to the conclusion of the rule or to the conditional corresponding
to the rule (see the discussion about prescriptive rules in Section 2).

The final drawback of the proposed semantics for SBVR is that, being based on
classical first order logic it is not suitable to handle conflicts. But as we have highlighted
in the discussion of the requirements, handling conflicts is one of the key requirements
for reasoning with legal rules.

3.3 The Semantic Web Rule Language (SWRL)

The Semantics Web Rule Language (SWRL) is a W3C proposal for a rule interchange
format which combines ontologies represented in the Description Logic (DL) subset of
OWL with an XML format for rules in the Unary/Binary Datalog subset of the Rule
Markup Language (RuleML).8 While both OWL-DL and Datalog, separately, are de-
cidable subsets of first-order logic, the union OWL-DL and Datalog, as in SWRL, is
undecidable.

Three approaches to implementing inference engines for SWRL have been tried. In
Hoolet, SWRL files are translated into a language for full first-order logic and a general
purpose first-order theorem prover is used to derive inferences, with all the undesirable

8 http://www.w3.org/Submission/SWRL/

computational properties this entails.9 In Bossam, SWRL files are translated into rules
for a forward-chaining production rule system. This procedure translates OWL-DL ax-
ioms into rules, but with a loss of information, since some information expressable in
OWL-DL axioms cannot be represented in Bossam’s production rule language. Thus the
resulting inference engine with this approach is incomplete. Finally, a third approach,
taken by Pellet, is to start with tableaux theorem-prover for OWL-DL and extend this
to support the “DL-safe” subset of SWRL [42].

Let us now try to evaluate SWRL with respect to the requirements we have identi-
fied for modeling and reasoning with legal rules. Since SWRL rules are Horn clauses, it
is not possible to model legal rules in an isomorphic way. Most legal rules would need
to be modeled using several SWRL rules. Morever, the lack of negation in Horn clause
logic is a problem, since both the conditions and conclusions of legal rules are often
negated. Perhaps this can be overcome in SWRL to some extent by defining comple-
mentary predicates using OWL classes. Since rules are represented in XML in SWRL,
they can be reified by giving them identifiers using XML attributes. Similarly, the vari-
ous properties of legal rules, such as their validity, could presumably also be represented
using XML attributes. But since these attributes would be at a meta-level, outside the
formal syntax and semantics of the SWRL logic, and since SWRL inherits the mono-
tonic semantics of classical first-order logic, it is not clear how these measures could be
used to resolve conflicts among legal rules, using principals like lex superior or to rea-
son with exclusionary rules. A further problem is that SWRL provides no standard way
to annotate the conditions of rules with information about the distribution of the burden
of proof, but it should be possible to extend SWRL, again using XML attributes, to pro-
vide this information. Semantically, unlike legal rules SWRL rules do contrapose, since
they are interpreted as material conditionals of classical logic, but in practice SWRL
reasoners are too weak to derive the undesired conclusions. Morever, even if the reason-
ers were stronger, without some way to represent negative facts, modus tollens would
never be applicable. If we separate the syntax of SWRL from its semantics, it might
be possible to develop a nonmonotonic logic which solves some of these problems,
while retaining SWRL’s syntax, but with some additional XML attributes for annotat-
ing rules. But it is difficult to imagine how this approach could satisfy the isomorphism
requirement.

3.4 The Rule Interchange Format (RIF)

The Rule Interchange Format (RIF) Working Group of the World-Wide-Web Consor-
tium was established in 2005, about a year afer the SWRL proposal was submitted, with
the goal of developing an extensible rule interchange format for the Web, building on
prior experience in related initiatives and W3C submissions, included RuleML, SWRL,
Common Logic and SBVR, among others.10

Like RuleML, RIF is intended to be an extensible framework for a whole family
of rule languages, possibly with different semantics. Currently, RIF consists of draft
reports for several components, including the following:

9 http://owl.man.ac.uk/hoolet/
10 http://www.w3.org/2005/rules/wg/charter.html

RIF Core. Defines an XML syntax for definite Horn rules without function symbols,
i.e Datalog, with a standard first-order semantics.

RIF Basic Logic Dialect (RIF-BLD). Defines a language, building on RIF Core, for
definite Horn rules with equality and a standard first-order semantics.

RIF Production Rule Dialect (RIF-PRD). Extends RIF Core to define a language for
production rules, i.e condition-action rules in which the actions supported are lim-
ited to modifications of the facts in working memory.

RIF RDF and OWL Compatibility. Defines semantics for the integrated use of RIF,
RDF and OWL in applications.

RIF Framework for Logic Dialects (RIF-FLD). Defines a framework which may be
used to configure RIF dialects. For example, one can choose whether negation is in-
terpreted classically or as negation-as-failure, as in logic programming, or whether
rules are interpreted as material implications or inference rules.

For the purpose of representing legal rule, RIF Core and RIF-BLD both appear to
suffer from the same problems as SWRL, and for the same reasons. The production
rule dialect of RIF does not seem relevant, since production rules, with their ability
to delete information from working memory, are a procedural programming paradigm
which may or may not be useful for implementing a legal reasoning support system, but
which are not suitable as a language for modeling legal norms. An interesting question
is whether the RIF Framework for Logic Dialects (RIF-FLD) could be used to config-
ure a RIF dialect which is more suitable for modeling legal norms. Although this ques-
tion requires further research, our initial impression is that the space of configurations
possible is limited to subsets of first-order logic and well-known logic programming
paradigms. Languages suitable for modeling legal norms presumably fall outside of this
space, since neither first-order logic nor common logic programming languages provide
sufficient support for the isomorphic modelling of legislation, allocating the burden of
proof among the parties in a legal dispute, or modeling principals for resolving rule
conflicts, such as lex superior.

3.5 The Legal Knowledge Interchange Format (LKIF)

The Legal Knowledge Interchange Format (LKIF) was developed in a three-year Eu-
ropean research project, ESTRELLA11, which completed its work at the end of 2008
[12, 11]. The goal of the ESTRELLA project, with respect to LKIF, was to develop an
interchange format for formal models of legal norms which is sufficient for modeling
legal knowledge in a broad range of application scenarios, builds on existing standards,
especially in the context of the Semantic Web, and informed by the state-of-the-art of
the field of Artificial Intelligence and Law.

LKIF is an XML Schema for representing theories and arguments constructed from
theories. A theory in LKIF consists of a set of axioms and defeasible inference rules.
The language of individuals, predicate and function symbols used by the theory can be
imported from an ontology represented in the Web Ontology Language (OWL). Import-
ing an ontology also imports the axioms of the ontology. All symbols are represented

11 IST-4-027655

using Universal Resource Identifiers (URIs). Other LKIF files may also be imported,
enabling complex theories to be modularized.

Axioms are named formulas of full first-order logic. The heads and bodies of in-
ference rules are sequences of first-order formulas. All the usual logical operators are
supported and may be arbitrarily embedded: disjunction (∧), conjunction (∨), negation
(¬), material implication (→) and the biconditional (↔). Both existential (∃) and uni-
versal (∀) quantifiers are supported. Free variables in inference rules represent schema
variables.

Terms in formulas may be atomic values or compound expressions. Values are rep-
resented using XML Schema Definition (XSD) datatypes. Atomic formulas are reified
and can be used as terms, allowing some meta-level propositions to be expressed.

The schema for atomic formulas has been designed to allow theories to be displayed
and printed in plain, natural language, using Cascaded Style Sheets (CSS). An atomic
proposition may first be represented in propositional logic, using natural language, and
later enriched to become a first-order model, by marking up the variables and constants
of the proposition and specifying its predicate using an XML attribute. This feature of
LKIF is essential for enabling domain experts, not just computer specialists, to write
and validate theories.

Support for allocating the burden of proof when constructing arguments from the-
ories in dialogues is provided. An assumable attribute is provided for atomic formulas,
to indicate they may be assumed true until they have been challenged or questioned.
An exception attribute is provided for negated formulas, to indicate that P may be pre-
sumed not true unless P has been proven. This is similar to negation-as-failure in logic
programming, in that the failure to find a proof for P is sufficient to prove ¬P, if ¬P is
an exception.

Arguments in LKIF link a sequence of premises to a conclusion, where both the
premises and the conclusion are atomic formulas. Attributes are provided for stating
the direction of the argument (pro or con), the argumentation scheme applied and the
role of each premise in an argument. Arguments can be linked together to form argu-
ment graphs. The legal proof standard each proposition at issue must satisfy, such as
“preponderance of the evidence” or “beyond reasonable doubt” may be specified. At-
tributes are provided for recording the relative weight assigned to each argument by the
finder of fact, such as the jury, or some other audience, as well as the status of each
issue in the proceeding.

All of the main elements of an LKIF file may be assigned Universal Resource Iden-
tifiers, allowing them to be referenced in other documents, anywhere on the World Wide
Web. Cross references between elements of legal source documents and the elements of
the LKIF document which model these sources may be included within the LKIF file,
using a sequence of source elements. The scheme allows m to n relationships between
legal sources and elements of the LKIF model to be represented.

LKIF builds on and uses many existing World Wide Web standards, including XML,
Universal Resource Identifiers, XML Namespaces, the Resource Description Frame-
work (RDF) and the Web Ontology Language (OWL). However, for a variety of reasons
it does not use other XML schemas for modeling legal rules, such as Common Logic,
RuleML, the Semantic Web Rule Language (SWRL), or the Rule Interchange Format

(RIF). Common Logic is an ISO standard for representing formulas of first-order clas-
sical logic. While LKIF includes a sublanguage for first-order logic, LKIF has been de-
signed to allow formulas of first-order logic to be represented in human readable form
in natural language, to ease development, maintenance and validation by domain ex-
perts. Moreover, the ISO Common Logic standard does not look like it will be widely
adopted within the World Wide Web community, which has its own standards body,
the World Wide Web Consortium. RuleML, SWRL and RIF, among other efforts, are
competing to become the Web standard for rules. At the beginning of the ESTRELLA
project, SWRL was the leading candidate. In the meantime, during the development of
LKIF in Estrella, RIF has become the leading contender. But neither SWRL nor RIF
are currently expressive enough for the legal domain. Legal rules can be understood
as domain-dependent defeasible inference rules. They cannot be adequately modeled
as material implications in first-order logic. However, an LKIF theory can in principal
import a first-order theory represented in any XML format, to be used as part of the
axioms of the theory. This feature of LKIF enables a part of the legal theory to be rep-
resented in first-order logic, using whatever format eventually becomes the World Wide
Web standard.

A reference inference engine for LKIF, called Carneades, was developed in ES-
TRELLA [13]. Carneades is written in a functional style, using the Scheme program-
ming language, and is available as Open Source software.12. Carneades places some
restrictions on LKIF rules: The heads of rules are limited to literals (positive or negated
atomic formulas) and the biconditional (↔) operator and first-order quantifiers are not
supported. (Free variables, represented schema variables, are supported.) Since LKIF
is a very expressive language, the computational complexity of various reasoning tasks
can be high, depending on which features of the language have been used in a model.
Carneades allows programmers to choose a search strategy (depth-first, breadth-first,
iterative deepening), and to develop and plug-in custom heuristic search strategies. Re-
source bounds can be set to assure that every search for arguments about an issue ter-
minates in a predictable period of time.

Because of the open-ended nature of legal reasoning, no formal model of a legal
domain, in any logic, can guarantee that inferences are legally correct in some abso-
lute sense. The formal model may be incorrect or incomplete. Or the search space may
be so large as to make the legal problem undecidable or intractable. Thus legal rea-
soning and argumentation necessarily has a procedural component. Legal procedures
are designed to assure that justifiable decisions can be made in finite time, expending
limited resources, as in Loui’s conception of resource-bounded, non-demonstrative rea-
soning [25]. LKIF and Carneades are designed for use in such procedures. The ability
of Carneades to generate arguments, making the reasoning of the system transparent
and auditable, is useful for documenting and justifying legal decisions.

4 Conclusions

In this paper we outlined a comprehensive list of requirements for rule interchange lan-
guages for applications in the legal domain. We used these requirements to assess the

12 http://carneades.berlios.de

suitability of some rule interchange languages, such as RuleML, SBVR, SWRL and
RIF, for modeling legal rules. We finally presented the Legal Knowledge Interchange
Format (LKIF), a new rule interchange format developed specifically for legal applica-
tions.

Currently, there is no language, among those that we have examined here, which
satisfy all the requirements we have listed in Section 2: all languages have thus their
pros and cons. It should be noted, however, that not all those requirements play the
same role in the legal domain. While the concept of defeasibility, for example, is almost
ubiquitous in the law, others, such as the representation of some temporal properties (in
particular, the time when a rule is in force) are definitely more important when we are
dealing, e.g., with legislation.

Accordingly, it seems to us that some languages are not currently expressive enough
for the legal domain. In particular, RIF and SWRL fail to meet the defeasibility require-
ment, which is quite fundamental: legal rules are often defeasible and cannot be cor-
rectly represented through material implications in first-order logic. Hence, LKIF and
RuleML look suitable and more flexible in this regard. Another requirement, among
others, which seems crucial for modeling legal rules is the correct representation of the
many different types of normative effects, and the need to capture, for example, the
deontic concepts. Here, SBVR and RuleML [16], though with some limitations, show
how to do that in a rather satisfactory way.

Finally, it should remarked that for specific types of applications, some (but not all)
of these requirements can be somehow relaxed. For example, strict isomorphism may
not always compulsory in systems for monitoring norm compliance, if producing an ex-
planation or justification is not required. Anyway, we do believe that the requirements
we have identified are fundamentally important for rule-based systems in the legal do-
main.

Acknowledgements

We would like to thank Harold Boley and Monica Palmirani for their valuable com-
ments on earlier versions of this paper.

NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. F. Abate and E. J. Jewell, editors. New Oxford American Dictionary. Oxford University
Press, 2001.

2. Architecture for Knowledge-Oriented Management of African Normative Texts using Open
Standards and Ontologies. http://www.akomantoso.org/, 2009.

3. T. Arnold-Moore. Automatic generation of amendment legislation. In Proc. ICAIL’97, New
York, 1997. ACM.

4. T. Bench-Capon. The missing link revisted: The role of teleology in representing legal argu-
ment. Artificial Intelligence and Law, 10(1-3):79–94, September 2002.

5. T. Bench-Capon and F. Coenen. Isomorphism and legal knowledge based systems. Artificial
Intelligence and Law, 1(1):65–86, 1992.

6. V. R. Benjamins, P. Casanovas, J. Breuker, and A. Gangemi, editors. Law and the Seman-
tic Web: Legal Ontologies, Methodologies, Legal Information Retrieval and Applications.
Springer-Verlag, 2005.

7. A. Boer, R. Hoekstra, and R. Winkels. Metalex: Legislation in XML. In Proc. JURIX 2002,
Amsterdam, 2002. IOS Press.

8. H. Boley, S. Tabet, and G. Wagner. Design rationale for RuleML: A markup language for
Semantic Web rules. In I. F. Cruz, S. Decker, J. Euzenat, and D. L. McGuinness, editors,
Proc. SWWS’01, The first Semantic Web Working Symposium, pages 381–401, 2001.

9. J. Carmo and A. J. Jones. Deontic logic and contrary to duties. In D. Gabbay and F. Guenther,
editors, Handbook of Philosophical Logic. 2nd Edition, volume 8, pages 265–343. Kluwer,
Dordrecht, 2002.

10. ChLexML. http://www.svri.ch/, 2009.
11. ESTRELLA Project. Estrella user report. Deliverable 4.5, European Commission, 2008.
12. ESTRELLA Project. The legal knowledge interchange format (LKIF). Deliverable 4.3,

European Commission, 2008.
13. ESTRELLA Project. The reference LKIF inference engine. Deliverable 4.3, European Com-

mission, 2008.
14. S. Goedertier and J. Vanthienen. A declarative approach for flexible business. In J. Eder and

S. Dustdar, editors, BPM Workshops 2006, pages 5–14, Berlin, 2006. Springer.
15. T. F. Gordon. The Pleadings Game; An Artificial Intelligence Model of Procedural Justice.

Springer, New York, 1995. Book version of 1993 Ph.D. Thesis; University of Darmstadt.
16. G. Governatori. Representing business contracts in RuleML. International Journal of Co-

operative Information Systems, 14(2-3):181–216, 2005.
17. G. Governatori, Z. Milosevic, and S. Sadiq. Compliance checking between business pro-

cesses and business contracts. In Proc. EDOC 2006, pages 221–232. IEEE, 2006.
18. G. Governatori and D. H. Pham. Dr-contract: An architecture for e-contracts in defeasible

logic. International Journal of Business Process Integration and Management, 5(4), 2009.
19. G. Governatori and A. Rotolo. Changing legal systems: Legal abrogations and annulments

in defeasible logic. The Logic Journal of IGPL, forthcoming.
20. G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions in defeasible

logic. In Proc. ICAIL’05, pages 25–34. ACM Press, 2005.
21. B. Grosof. Representing e-commerce rules via situated courteous logic programs in RuleML.

Electronic Commerce Research and Applications, 3(1):2–20, 2004.
22. J. C. Hage. Reasoning with Rules – An Essay on Legal Reasoning and its Underlying Logic.

Kluwer Academic Publishers, Dordrecht, 1997.
23. H. Kelsen. General theory of norms. Clarendon, Oxford, 1991.
24. Legal and Advice Sectors Metadata Scheme (LAMS5).

www.lcd.gov.uk/consult/meta/metafr.htm.
25. R. P. Loui. Process and policy: resource-bounded non-demonstrative reasoning. Computa-

tional Intelligence, 14:1–38, 1998.
26. C. Lupo and C. Batini. A federative approach to laws access by citizens: The Normeinrete

system. In R. Traunmuller, editor, Proc. Second International Conference on Electronic
Government, Berlin, 2003. Springer.

27. C. Lupo, F. Vitali, E. Francesconi, M. Palmirani, R. Winkels, E. de Maat, A. Boer, and P. Ma-
scellani. General XML format(s) for legal sources. Technical report, IST-2004-027655 ES-
TRELLA European project for Standardised Transparent Representations in order to Extend
Legal Accessibility: Deliverable 3.1, 2007.

28. J. McClure. Legal-rdf vocabularies, requirements and design rationale. In Proc. V Legislative
XML Workshop, Florence, 2006. European Press.

29. The OWL services coalition: OWL-S 1.2 pre-release.
http://www.ai.sri.com/daml/services/owl-s/1.2/, 2006.

30. A. Paschke, M. Bichler, and J. Dietrich. Contractlog: An approach to rule based monitoring
and execution of service level agreements. In A. Adi, S. Stoutenburg, and S. Tabet, editors,
RuleML 2005, pages 209–217, Berlin, 2005. Springer.

31. M. Pesic and W. van der Aalst. A declarative approach for flexible business. In J. Eder and
S. Dustdar, editors, BPM Workshops 2006, pages 169–180, Berlin, 2006. Springer.

32. H. Prakken and G. Sartor. A dialectical model of assessing conflicting argument in legal
reasoning. Artificial Intelligence and Law, 4(3-4):331–368, 1996.

33. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–106,
2005.

34. A. Rotolo, G. Sartor, and C. Smith. Good faith in contract negotiation and performance.
International Journal of Business Process Integration and Management, 5(4), 2009.

35. R. Rubino, A. Rotolo, and G. Sartor. An owl ontology of fundamental legal concepts. In
JURIX, pages 101–110, 2006.

36. RuleML. The Rule Markup Initiative. http://www.ruleml.org, 20th August 2009.
37. S. Sadiq, M. Orlowska, and W. Sadiq. Specification and validation of process constraints for

flexible workflows. Information Systems, 30(5):349–378, 2005.
38. G. Sartor. Legal reasoning: A cognitive approach to the law. In E. Pattaro, H. Rottleuthner,

R. Shiner, A. Peczenik, and G. Sartor, editors, A Treatise of Legal Philosophy and General
Jurisprudence, volume 5, page 844. Springer, 2005.

39. OMG: Semantics of business vocabulary and business rules (SBVR).
http://www.businessrulesgroup.org/sbvr.shtml, 2008.

40. M. Sergot. A computational theory of normative positions. ACM Transactions on Computa-
tional Logic, 2(4):581–622, 2001.

41. M. Sergot, F. Sadri, R. Kowalski, F. Kriwaczek, P. Hammond, and H. Cory. The British
Nationality Act as a logic program. Communications of the ACM, 29(5):370–386, 1986.

42. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner.
Web Semantics, 5(2):51–53, 2007.

43. W. van der Aalst, M. Weske, and D. Grünbauer. Case handling: a new paradigm for business
process support. Data Knowledge Engineering, 53(2):129–162, 2005.

44. B. Verheij. Rules, Reasons, Arguments. Formal Studies of Argumentation and Defeat. Ph.d.,
Universiteit Maastricht, 1996.

45. G. H. von Wright. Norm and Action. Routledge, London, 1963.
46. G. Waagbø. Quantified modal logic with neighborhood semantics. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik, 38:491–499, 1992.
47. G. Wagner, G. Antoniou, S. Tabet, and H. Boley. The abstract syntax of RuleML – towards

a general web rule language framework. In Proc. Web Intelligence 2004, pages 628–631.
IEEE, 2004.

