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ABSTRACT
Legal reasoning typically requires a variety of argumenta-
tion schemes to be used together. A legal case may raise
issues requiring argument from precedent cases, rules, pol-
icy goals, moral principles, jurisprudential doctrine, social
values and evidence. We present an extensible software ar-
chitecture which allows diverse computational models of ar-
gumentation schemes to be used together in an integrated
way to construct and search for arguments. The architecture
has been implemented in Carneades, a software library for
building argumentation tools. The architecture is illustrated
with models of schemes for argument from ontologies, rules,
cases and testimonial evidence and compared to blackboard
systems for hybrid reasoning.

1. INTRODUCTION
We present an extensible software architecture which

allows diverse computational models of argumentation
schemes to be used together in an integrated way to con-
struct and search for arguments. To make this paper self-
contained, we begin by summarizing the mainstream mod-
ern conception of argument in philosophy [37], and the com-
putational model of argument we have developed for the
Carneades system[17].1

An argument links a set of statements, the premises, to
another statement, the conclusion. The premises may be
labelled with additional information, about their role in the
argument. Aristotle’s theory of syllogism, for example, dis-
tinguished major premises from minor premises. The basic
idea is that the premises provide some kind of support for the
conclusion. If the premises are accepted, then the argument,
if it is a good one, lends some weight to the conclusion. Un-
like instances of valid inference rules of classical logic, the
conclusion of an argument need not be necessarily true if
the premises are true. Moreover, some of the premises of

1The Carneades system is open source software available at
http://carneades.berlios.de.
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an argument may be implicit. An argument with implicit
premises is called an enthymeme [37, p. 178].

Arguments have been modeled in various ways computa-
tionally: abstractly, with no structure [12], as sets of as-
sumed propositions [31, 15, 7], and as proofs or derivations
in some logical calculus [25]. We prefer to model arguments
in a way which is closer to the concept of an argument in
philosophy, as tuples of the type (list[premise], statement)
where list[premise] denotes the type of a list of premises, and
the statement is the conclusion of the argument. A premise
is either a statement, exception or assumption. A statement
is some representation of a proposition. We assume a com-
plement function of type statement ⇒ statement such that
complement(p) denotes the proposition which is the logical
negation of the proposition denoted by p and complement
(complement(p)) equals p. Exceptions and assumptions are
denoted unless p and assuming p, respectively, where p is a
statement, and represent the critical questions which may
be asked to undercut an argument [17]. An argument is a
structure (P,c), denoted c since [p1, . . . , pn].2

Let a1 be the argument q since P and let r = comple-
ment(q). We say a1 is an argument pro q and con r. Note
that a1 is not a con argument for every proposition inconsis-
tent with q since checking consistency is either undecidable,
in the case of first-order logic, or at least intractable, in the
case of propositional logic. We assume there is a simple syn-
tactic test of checking whether r = complement(q). If two
propositions are inconsistent but not complements, the in-
terested party has the burden of proving this by asserting an
argument of the form ¬p since [¬p ∨ ¬q, q] and then prov-
ing the premises. This is an example of our general strategy
of allocating intractable and undecidable problems to the
parties.

To give an example, the classic argument about Socrates
being mortal can be denoted as mortal(Socrates) since
man(Socrates). This is an example of an ethymeme, since
the major premise, ∀ x . man(x) → mortal(x), is implicit.

Argumentation is the process of putting forth arguments
to determine the acceptability of propositions. Argumen-
tation processes are typically dialogs involving two or more
agents, but may also be monological. Procedural norms,
called argumentation protocols, regulate the process, to help
promote values such as rationality, fairness, efficiency and
transparency. Which protocol is appropriate depends on

2The notation used in this article for logic and mathematics
is intended to make formulas more pleasant to read using
long, mnemonic identifiers. This article contains no pro-
gramming language code.

http://carneades.berlios.de


the type of the process and its goals. At a very high level
of abstraction, an argumentation process can be viewed as
a sequence of stages, where each stage consists of the set
of arguments which have been put forward thus far in the
process, along with other information, such as a record of
claims or commitments [21].

At each stage of the argumentation process, an effective
method (decision procedure) is needed for testing whether
some proposition at issue is presumably true given the argu-
ments of the stage and a set of assumptions. The assump-
tions could represent undisputed facts, the current consensus
of the participants, or the commitments or beliefs of some
agent, depending on the task. This determination may de-
pend on the proof standard applicable to the proposition
at issue, given the dialogue type and its protocol. What is
needed, simplifying somewhat, is a decidable function, let
us call it acceptable, of the type (arguments: set[argument],
assumptions: set[statement], issue: statement) ⇒ Boolean.
An acceptability function of this type is provided by the
Carneades model of argument [17].3

Carneades’ “relational core”, stripped of its support for
multiple proof standards and allocating various kinds of bur-
den of proof, was shown by Prakken in [17] to be very sim-
ilar to the ambiguity-blocking variant of Defeasible Logic
(DL) [24]. Governatori [18] investigated the relationship be-
tween DL and Dung’s abstract argumentation framework
[12]. He proved that the ambiguity-propagating variant of
DL instantiates Dung’s grounded semantics, for a version of
DL without strict rules. He also proved this result for the
ambiguity-blocking variant of DL, but to obtain this result
he had to change Dung’s notion of acceptability of an argu-
ment with respect to a set of arguments. Prakken conjec-
tures that, because of its ambiguity-blocking character, the
relational core of Carneades cannot be proven to instantiate
any of the four semantics of Dung’s abstract argumentation
framework without changing Dung’s notion of acceptability.

At each stage of an argumentation process, a common task
will be to try to find or construct additional arguments which
can be put forward to make an acceptable statement unac-
ceptable, or vice versa. Whereas the problem of checking the
acceptability of a statement given a finite set of arguments is
decidable, the problem of finding or constructing arguments
is in general ill-defined, open and undecidable. While mod-
els of sources of arguments can be constructed, for example
a rule-base representing knowledge about some domain, and
these models can be used to generate arguments, it is not
usually possible, as a practical matter, to model all relevant
sources of arguments. Moreover, models are always abstrac-
tions and thus subject to critical questions about their ade-
quacy for the task at hand. Despite these limitations, models
are essential for constructing arguments. Since models are
abstractions developed for particular purposes and provide
only specialized views onto reality, several models may be
relevant and useful for an argumentation process, depend-
ing on the issues.

For example, a legal case may raise issues requiring argu-
ment from precedent cases, rules, policy goals, moral prin-

3The decidability of the acceptable function does not imply
decidability for the task of determining whether some state-
ment is acceptable given all possible arguments which can
be constructed from a body of information, using all possible
argumentation schemes. Again, intractable and undecidable
tasks are allocated to the parties in our approach.

ciples, jurisprudential doctrine, social values and evidence.
Argumentation tools are needed for helping people to argue
their cases effectively in court and administrative proceed-
ings. Tools for reconstructing, visualizing and evaluating ar-
guments, while important, are not sufficient in this context.
A party to a legal or administrative proceeding is not in the
role of an analyst trying to understand a previous dialogue,
but rather in the role of an advocate needing to construct
and put forward effective arguments as the dialogue unfolds.

How can arguments constructed from multiple, hybrid
models be integrated, aggregated and evaluated? Our thesis
is that argumentation schemes enable the methods used to
contruct arguments to be separated and abstracted from the
form and content of arguments. Argumentation frameworks
[12, 17] for aggregating and evaluating arguments depend
only on relationships between arguments, not the methods
used to construct them. This separation makes it possible to
use a variety of hybrid methods to construct arguments and
then to aggregate and evaluate these hybrid arguments using
a common argumentation framework. Each argumentation
scheme, in its role as a method, implements a common pro-
tocol for mapping an issue and a model of some information
or knowledge to a set of arguments about the issue. A set
of such argumentation schemes induces a search space over
sets of arguments. Heuristic methods can be used together
with an argumentation framework, such as Carneades, to
search this space for sets of arguments in which some goal
statement or argument is acceptable.

The rest of this article is organized as follows. The next
section introduces the concept of argumentation schemes
from philosophy and presents our computational model of
schemes as implementations of an abstract protocol for con-
structing arguments from models. The following sections
illustrate this idea with outlines of computational models
of schemes for argument from ontologies, rules, cases and
witness testimony, respectively. A section on related work
compares our work with other architectures for hybrid rea-
soning, in particular blackboard systems. The article con-
cludes by reiterating the main results and suggesting ideas
for future work.

2. ARGUMENTATION SCHEMES
An argumentation scheme is a pattern which can be used

both to create arguments, by instantiating the pattern, and
to classify arguments, by matching a given argument to the
pattern.4 For example, here is a version of the scheme for
argument from position to know [37, p. 85].

Argument from Position to Know
Position to Know Premise. Person p is in a position to

know whether the statement s is true of false.

Assertion Premise. p asserts that s is true (false).

Conclusion. s is true (false).

Just as ‘argument’ can mean both an argumentation pro-
cess and a relationship between a set of premises and a con-
clusion, so too can argumentation schemes be viewed from

4A scheme with free variables is equivalent to the set of
schemes which can be generated by systematically instanti-
ating the variables by constants denoting individuals.



two perspectives, as tools for 1) argument reconstruction and
classification, and 2) argument construction or generation.

The classification function of argumentation schemes
plays an important role during the process of reconstructing
arguments from natural language texts, for example to help
identify implicit premises. Argument reconstruction can be
viewed as an application of abductive reasoning. Argumen-
tation schemes are used as patterns to construct a set of al-
ternative interpretations of the text, where each interpreta-
tion is an argument instantiating some scheme. These inter-
pretations form the set of hypotheses for abductive reason-
ing. The task is then to choose the interpretation among the
hypotheses which best explains the text and other evidence.
Once the argument has been reconstructed, the scheme can
also be used to help identify missing premises needed to eval-
uate the argument. For example, the scheme for argument
from position to know could be used to help interpret the
text “Markley lives in California and tells me the weather
is beautiful there.” as an argument for the proposition that
the weather is good in California since Markley has asserted
this and is in a position to know this. One kind of computa-
tional model suitable for supporting this classification task
would be a formal ontology of argumentation schemes, rep-
resented in some version of description logic [4], such as the
Web Ontology Language [23]. Rahwan and Banihashemi
have developed a model of argumentation schemes of this
type [29].

The other way to look at argumentation schemes is as
tools for constructing or inventing new arguments to put
forward in dialogues. For example, if the quality of the
weather in California is at issue, one could apply the scheme
for argument from position to know by interviewing people
who live in California about the weather there. From this
perspective, argumentation schemes are methods for con-
structing arguments. The two perspectives are complemen-
tary. The result of applying a scheme qua method is an
argument which is an instance of the scheme qua pattern.
When necessary to distinguish these two meanings, we use
the terms“argument generator”and“argument patterns” for
the method and template senses of argumentation schemes,
respectively.

The focus in this article is on computational models of ar-
gumentation schemes in the sense of argument generators.
To allow models of diverse argumentation schemes to be
used together, we first develop a protocol for argument gen-
erators and require every argument generator to implement
this protocol. Intuitively, the job of an argument genera-
tor is to construct a sequence of arguments which may be
useful for proving or disproving a goal statement. A set of
argument generators induces a search space. Each argument
produced by an argument generator can be used to construct
a successor state in the space. The space can be searched
heuristically for states in which the statement at issue is ei-
ther acceptable or not, depending on whether the goal is to
prove or disprove the statement.

More formally, an argument generator is a function of the
type (arguments: set[argument], assumptions: set[statement],
issue: statement) ⇒ stream[argument], where the type
stream[argument] denotes a possibly infinite sequence of ar-
guments.5

5The signature of argument generators in Carneades is ac-
tually a bit more complicated than this, since some heuris-
tic control information is passed to the generator and a set

3. ARGUMENT FROM ONTOLOGY
In computer science, an ontology is a representation of

concepts and relations among concepts, typically expressed
in some decidable subset of first-order logic, such as descrip-
tion logic [4]. Such ontologies play an important role in
integrating systems, by providing a formal mechanism for
sharing terminology, and also in the context of the so-called
Semantic Web [5] for providing machine-processable meta-
data about web resources and services. There is a World
Wide Web standard for modeling ontologies, based on de-
scription logic, called the Web Ontology Langauge (OWL)
[23]. In this section, we outline one way to construct argu-
ments from ontologies modeled using the Description Logic
Programming (DLP) subset of description logic [19].

Suppose we have the following simple DLP ontology, rep-
resented using standard description logic syntax:

Man ≡ Human ∩ Male
Woman ≡ Human ∩ Female
mother v parent
parent v ancestor

This defines the concept, Man to be equivalent to male
humans. Woman is defined analogously. The mother role,
is subrole of parent, which in turn is a subrole of ancestor.
Description logic concepts and roles would be represented as
unary and binary predicates, respectively, in predicate logic.

Assuming statements in arguments are represented using
first-order logic, as is the case in Carneades, a scheme for ar-
gument from ontologies within the DLP subet of description
logic can be implemented using the DLP translation between
description logic and the Horn clause subset of first-order
predicate calculus.

To implement this argumentation scheme, satisfy-
ing the protocol, we need a function, let us call it
argument-from-ontology, of type ontology ⇒ (arguments:
set[argument], assumptions: set[statement], issue: statement)
⇒ stream[argument]. Suppose we want to find arguments
about whether or not one of Max’s ancestors is Gertrude.
Let p be a predicate calculus formula representing this goal
statement, ancestor(Max,Gertrude). Let family-relations be
the ontology defined above. Let family-relations-scheme be
argument-from-ontology(family-relations). Let G be a set of
arguments and A an empty set of assumptions. Then the
value of family-relations-scheme(G,A,p) is the following finite
stream of arguments:

stream(ancestor(Max,Gertrude) since [parent(Max,Gertrude)])

The protocol does not require argumentation schemes
to return only arguments which would make the state-
ment at issue acceptable or unacceptable, when added to
the prior arguments, G in the example above. If accept-
able(G,A,parent(Max,Gertrude)) is not true, the heuristic
search procedure can apply other argumentation schemes
to try to find further arguments for parent(Max,Gertrude),
in a backwards-chaining, goal-directed way, which together

of substitutions, mapping logical variables to terms, is re-
turned along with each argument in the resulting stream of
arguments. To keep things simpler, for expository purposes,
we assume in this paper that statements are represented as
ground formulas in first-order predicate calculus, i.e. formu-
las which do not contain variables, but only constants.



with the previous arguments do make the goal statement
acceptable.

We do not have space to show how to implement this ar-
gumentation scheme in detail, but it is not difficult, at least
not for the DLP subset of description logic. Some system-
atic way for mapping predicate symbols to the names of
concepts and properties in ontologies is required. OWL pro-
vides a way to achieve this, using Universal Resource Iden-
tifiers (URIs). This is an example of the kind of integration
problem for which OWL was developed to solve.

One issue is whether or not arguments from ontologies
should be defeasible, since ontologies are typically defined
using some subset of first-order logic, which is of course
monotonic. One might claim that all communication pre-
sumes a shared ontology which is not subject to debate. Our
view is that arguments from ontology are defeasible, in the
same way that arguments from theory are defeasible. Even
if one accepts that a community in principle shares some
ontology, this does not imply that a model of this ontology
in some representation language, such as OWL, is adequate
or beyond dispute. And even if there has been an explicit
agreement within a community to accept an ontology as a
standard, or some institional authority has declared the on-
tology to be binding, arguments from such agreements and
authority are also defeasible and subject to critical ques-
tions.

The second author has defined a scheme for argument
from verbal classification [37, p. 128–132] which can be
viewed as a kind of argument from ontology.

Argument from Verbal Classification
Individual Premise. a has property f.

Classification Premise. For all x, if x has property f, then
x can be classified as having property g.

Conclusion. a has property g.

Arguments from verbal classification are defeasible. Here
is one of the scheme’s critical questions: “Is the verbal classi-
fication in the classification premise based merely on a stip-
ulative or biased definition that is subject to doubt?”. One
can imagine other critical questions. Our aim here is only to
provide evidence for the claim that arguments from ontology
are defeasible, not to explicate these critical questions.

Critical questions can be included in the arguments re-
turned by an argumentation scheme using exceptions and
assumptions. For example, the bias critical question above
should be modeled as an exception if the burden of produc-
ing arguments pro bias should be on the party challenging
the argument from ontology, rather than requiring the party
who made the argument from ontology to produce argu-
ments showing the lack of bias on the part of the developers
of the ontology. Whether a critical question should be an
exception or assumption is a policy issue that needs to be
addressed by the developers of the argumentation scheme.

To include the bias critical question in the arguments re-
turned by the scheme, the ontology needs to be reified by
assigning it an identifier. Indeed every OWL ontology has a
URI which can be used to reference it. Let o1 be the URI of
the example above and biased be a unary predicate, possibly
defined in some other ontology. Then the bias critical ques-
tion can be included in the arguments returned in response
to the example query above as follows:

stream(human(Joe) since [man(Joe), unless biased(o1)],
human(Joe) since [woman(Joe), unless biased(o1)])

As a practical matter, including such critical questions can
vastly increase the size of the search space for arguments.
Indeed, we conjecture that one reason ordinary premises
and critical questions are distinguished in argumentation
schemes is as a heuristic for reducing the size of the search
space. Thus, the control component of a search engine for ar-
guments should provide some way for users to control which
kinds of critical questions are asked, perhaps on an issue-by-
issue basis.

One more point: Implementing an argumentation scheme
for a more expressive description logic than DLP is surely a
difficult task. Description logic theorem provers are complex
technology and, to our knowledge, typically do not produce
proof trees which could be used to extract arguments. The
developers of the DLP subset of description logic claim that
it is expressive enough for most purposes. But whether or
not one agrees with this assessment, from an argumentation
perspective this is just an example of the necessary practi-
cal limits of all models for generating arguments. Models
are abstractions which leave out information which could be
relevant for resolving some issue. A DLP version of a richer
ontology is an example of a model which abstracts away
some information for practical reasons.

4. ARGUMENT FROM RULES
There are many kinds of rules. The common sense, dic-

tionary meaning of rule is “One of a set of explicit or un-
derstood regulations or principles governing conduct within
a particular sphere of activity.” [1]. In classical logic, rules
can be inference rules or material implications. In com-
puter science, rules can be production rules, grammar rules,
or rewrite rules. When we use the term ‘rule’ in this sec-
tion, unless otherwise stated, we mean rule in the regulatory
sense.

Rules express not only regulations about how to act, but
also regulate how to argue or reason when planning actions
or determining whether or not some action or state complies
with the rules. For example, the criminal law rule against
murder, defined as the “unlawful killing of a human being
with malice aforethought”, expresses not only a general pol-
icy against such killings, but also a policy to presume that
a murder has taken place given proof that a human being
was intentionally killed. There are exceptions, such as self
defense, but the rules are formulated so as to deter killings
by increasing the probability that persons will presume that
some contemplated killing would be illegal.

Since argumentation schemes express reasoning norms
and conventions of a community, argumentation schemes
and rules appear to have much in common. Recall that ar-
gumentation schemes can be viewed from two perspectives,
as argument patterns and as argument generators. Rules
represent argument patterns in a way which enables them
to be used to generate arguments. Other representations
of argument patterns may be better suited to the task of
reconstructing arguments from natural language texts.

In the field of artificial intelligence and law, there is now
much agreement about the structure and properties of rules.
[15, 27, 20, 33]:

1. Rules have properties, such as their date of enactment,
jurisdiction and authority.



2. When the antecedent of a rule is satisfied by the facts
of a case, the conclusion of the rule is only presumably
true, not necessarily true.

3. Rules are subject to exceptions.

4. Rules can conflict.

5. Some rule conflicts can be resolved using rules about
rule priorities, e.g. lex superior, which gives priority to
the rule from the higher authority.

6. Exclusionary rules provide one way to undercut other
rules.

7. Rules can be invalid or become invalid. Deleting in-
valid rules is not an option when it is necessary to rea-
son retroactively with rules which were valid at various
times over a course of events.

8. Rules do not counterpose. If some conclusion of a rule
is not true, the rule does not sanction any inferences
about the truth of its premises.

One consequence of these properites is that rules cannot
be modeled adequately as material implications in predicate
logic. Rules need to be reified as terms, not formulas, so
as to allow their properties, e.g. date of enactment, to be
expressed and reasoned about for determing their validity
and priority.

Rules can be modelled as tuples of the type (name: symbol,
premises: list[statement], exceptions: list[statement], assump-
tions: list[statement], conclusions: list[statement]), denoted r:
c1, . . . , cn ⇐ p1, . . . , pn., where r is the name of the rule,
p1, . . . , p2 are the premises, exceptions and assumptions of
the rule, in any order, and c1, . . . , cn are the conclusions of
the rule. Exceptions and assumptions in rules are denoted
unless p and assuming p, respectively, to distinguish them
from ordinary premises.

In the Pleadings Game [15], the first author presented one
of the first computational models of a scheme for argument
from rules. At about the same time, similar work was pub-
lished by Hage and Verheij [20, 33], and Prakken and Sartor
[27]. From this work the following scheme for arguments
from rules can be distilled.

Argument from Rules
Let (r1,P,E,A,C) be a rule.

Rule Premises. Let p1, . . . , pn be the premises in P.

1. p1 is true.

2. . . .

3. pn is true.

Rule Exceptions. Is some e in E true?

Rule Assumptions. Is every a in A true?

Validity Assumption. Is valid(r1) true?

Exclusionary Exception. Is excluded(r1,c) true, for the
conclusion c in C at issue?

Priority Exception. For the conclusion c at issue, is there
a rule r2 such that priority(r2,r1,c)?

Conclusions. Let c1, . . . , cn be the statements in C.

1. applicable(r1)

2. c1 is true.

3. . . .

4. cn is true.

The priority exception represents the critical question for
asking whether there is some other applicable rule r2 of
higher priority that can be used to reach a conclusion c2
which is complementary, and thus contradictory, to the con-
clusion c of r at issue. Let a1 be the argument c1 since P1
and a2 the argument c2 since P2. If c1 and c2 are contra-
dictory then, in Pollock’s [25] terms, a1 and a2 rebut each
other. Some way is needed to resolve conflicts among rebut-
tals. Carneades uses proof standards for this purpose [17].
The priority exception provides an alternative, more spe-
cific way to resolve conflicts among arguments from rules,
by undercutting arguments from lower priority rules. This
approach is one way to enable issues about rule priorities to
be raised and resolved via argumentation, in a uniform way,
just like other issues.

To illustrate, here is a small rulebase about German family
law:

§1589: direct-lineage(x,y) ⇐ ancestor(x,y).
§1601: obligated-to-support(x,y) ⇐ direct-lineage(x,y).
§1602: not obligated-to-support(x,y) ⇐ not needy(x).
§1611: excluded(§1601, obligated-to-support(y,x)) ⇐

neediness-caused-by-own-immoral-behavior(x).

This models the following rules. §1589 states that ances-
tors are persons in direct lineage. §1601 states the general
rule that persons in direct lineage are obligated to support
each other. §1602 states an exception: there is no obligation
to support a person who is not needy. §1611 excludes from
§1601 needy relatives whose neediness was caused by their
own immoral behavior.

To implement the scheme for argument from rules,
satisfying the protocol, we need a function, let us call
it argument-from-rules, of type list[rule] ⇒ (arguments:
set[argument], assumptions: set[statement], issue: statement)
⇒ stream[argument]. Let family-support-law be the list of
rules defined above. Let family-support-scheme be argument-
from-rules(family-support-law). Let G be a set of arguments
and A an empty set of assumptions.

Suppose we want to use this scheme to find arguments for
Max being obligated to support Gertrude. Let p be the goal
statement obligated-to-support(Max,Gertrude). Then family-
support-scheme(G,A,p) generates the following argument:

stream(obligated-to-support(Max,Gertrude) since
[direct-lineage(Max,Gertrude),
assuming valid(§1601),
unless excluded(§1601,

obligated-to-support(Max,Gertrude)),
unless priority(§1602,§1601,

obligated-to-support(Max,Gertrude)])

The priority exception in this example is more specific
than necessary. The argument can be undercut by any rule
having priority over §1601, not just §1602. But stating this
exception more generally would require us to violate the



simplifying assumption restricting statements to ground for-
mulas. The Carneades implementation can handle variables
and the simplification was made only for expository pur-
poses.

5. ARGUMENT FROM CASES
There are various forms of case-based reasoning. The

simplest forms are variations of the scheme for argument
from analogy, which use some similarity measure to compare
cases. More complex schemes compare theories constructed
from a set of cases, and order competing theories by their
coherence. In this section, we present Wyner and Bench-
Capon’s reconstruction of the CATO [2] model of analogical
case-based reasoning as a set of argumentation schemes [38].
CATO, in turn, is a refinement of Ashley’s work on HYPO
[3].

A basic scheme for argument from analogy [37, p. 96] is:

Argument From Analogy
Similarity Premise. Case c1 is similar to case c2.

Base Premise. Proposition p is true (false) in case c1.

Conclusion. p is true (false) in c2.

The challenge when modeling reasoning by analogy is to
operationalize the concept of similarity. In CATO, a case-
base is about a particular issue, such as, in a case-base about
family law, whether providing support to a family mem-
ber would cause undue hardship. A case is modeled as a
set of propositional factors, arranged in a factor hierarchy.
Each factor favors one side of the issue. Factors in favor of
the proposition at issue are called “plaintiff factors”; factors
against the proposition at issue are called “defendant fac-
tors”. In our family law example, a short expected duration
of support is a defendant factor, while irreparable harm to a
person’s relationship with his immediate family is a plaintiff
factor. Two cases are considered similar if they have factors
in common. If two conflicting precedents are similar to the
current case, the argument from the more ‘on-point’ case is
stronger. Let cc be the current case. Define more-on-point to
be a function of type (pc1: case, pc2: case)⇒ Boolean where
more-on-point(pc1,pc2) is true if factors(pc1) ∩ factors(pc2)
⊃ factors(pc2) ∩ factors(cc).

Arguments are constructed by comparing the set of fac-
tors of the current case with the factors of precedent cases.
Each precedent case is modeled as a set of factors together
with the decision of the case regarding the issue of the case-
base, undue hardship in our example. Let factors, pfactors
and dfactors be functions of type case ⇒ set[factor] for se-
lecting all factors, the plaintiff factors and the defendent
factors, respectively, of a case. Let decision be a function
of type case ⇒ {plaintiff, defendant} such that decision(c)
equals the party in whose favor the issue was decided. Let
other-party be a function of type party ⇒party such that
other-party(defendant) = plaintiff and other-party(plaintiff) =
defendant.

Wyner and Bench-Capon defined seven partitions of the
set of factors of a precedent case compared to the current
case. Each partition is a function of type case ⇒ set[factor].
Let pc be a precedent case. For example, partition1(pc) is the
intersection of the plaintiff factors in pc and the current case.
Similarly, partition2(pc) is the intersection of the defendant
factors of pc and the current case.

Wyner and Bench-Capon defined six case-based argumen-
tation schemes using these partitions. The three example
schemes below are based on Wyner and Bench-Capon’s, but
reflect more closely their implementation in Carneades.

AS1. Factor Comparison Scheme
Let cc be the current case and q be the proposition at issue
in the casebase.

Premise. The factors of the current case favor party p, de-
noted factors-favor(p).

Conclusion. q, if p = plaintiff, otherwise complement(q).

AS2. Preference from Precedent Scheme
Let pc1 be some precedent case and p be a party.

Outcome Premise. decision(pc1) = p.

Counterexample Exception. There exists a precedent
case, pc2, such that is-counterexample(pc2,pc1).

Conclusion. factors-favor(p)

Counterexample Scheme
Let pc1 and pc2 be precedent cases and p be a party.

Premise. decision(pc1) = p

Premise. decision(pc2) = other-party(p)

Premise. more-on-point(pc2,pc1).

Conclusion. is-counterexample(pc2,pc1)

To illustrate these schemes, let us define a simple case
base about undue-hardship. There are five factors, three for
the plaintiff and two for the defendant:

Plaintiff Factors

1. has-already-provided-much-support

2. never-had-parent-child-relationship

3. would-cause-irreparable-harm-to-family

Defendant Factors

1. expected-duration-of-support-is-short

2. has-not-provided-care

The casebase, cb1, consists of only three precedent cases,
Müller, Bauer and Schmidt:

Müller. Decided for plaintiff. Factors: {never-had-a-parent-
child-relationship}.

Schmidt. Decided for defendant. Factors: {never-had-a-
parent-child-relationship, expected-duration-is-short}.

Bauer. Decided for plaintiff. Factors: {never-had-a-parent-
child-relationship, expected-durations-is-short, would-
cause-irreparable-harm-to-family}



Let argument-from-cases be a function of type list[case]
⇒ (arguments: set[argument], assumptions: set[statement],
issue: statement) ⇒ stream[argument], matching the proto-
col for argumentation schemes. Let argument-from-cb1 be
argument-from-cases(cb1).

Let A be a set of factors assumed to be true in
the current case: { not has-already-provided-much-support,
expected-duration-of-support-is-short, never-had-parent-child-
relationship, would-cause-irrepairable-harm-to-family, not has-
not-provided-care}.

Let G be a set of arguments. The factors of the current
case, cc, used for comparison with precedent cases, are the
propositions which are acceptable in the set of arguments
G, given the assumptions, i.e. factors(cc) = {p | accept-
able(G,A,p) }.

We can use the argument-from-cb1 instantiation of the
argument-from-cases scheme to construct arguments for
undue-hardship in the current case, with argument-from-
cb1(G,factors(cc),undue-hardship), which equals:

stream(undue-hardship since
[factors-favor(plaintiff,undue-hardship)])

The argument returned was constructed using the AS1
(Factor Comparison) argumentation scheme. We can use
the arguments-from-cb1 argumentation scheme again, back-
ward chaining, to construct the following argument from the
premise of this argument:

argument-from-cb1(G,
factors(cc),
factors-favor(plaintiff,undue-hardship)) =

stream(factors-favor(plaintiff,undue-hardship) since
[never-had-parent-child-relationship,
unless is-counterexample(Schmidt,Müller)])

This argument, while correct, is more concrete than we
would like, since the exception asks only if the Schmidt
precedent is a counterexample to the cited case, Müller,
rather than asking whether any case in the casebase is a
counterexample. Once again, this is due to the simplify-
ing assumption restricting statements to ground formulas.
In the argument returned by Carneades implementation,
Schmidt would be replaced by a variable.

In fact, Schmidt is a counterexample to Müller. The coun-
terexample scheme could be used to construct an argument
for the exception, undercutting the argument above. But
since Bauer is even more on-point than Schmidt, the coun-
terexample scheme could be used again to undercut the ar-
gument from Schimdt.

6. ARGUMENT FROM TESTIMONIAL
EVIDENCE

In court proceedings, a basic source of evidence about the
facts of the case is witness testimony. Similarly, in adminis-
trative procedures of public agencies, such as procedures for
determing tax obligations or rights to social benefits, citizens
provide information about the facts, typically by complet-
ing forms. In both cases, the conclusions one may draw are
only presumptively true. Witnesses do not always tell the
truth or can be mistaken. Tax declarations are audited for
good reasons. Thus the conventions of an agency, court or

other organziation for drawing inferences from claims and
testimony can be viewed as argumentation schemes.

Argument from testimonial evidence is a specialization of
the following scheme for argument from position to know
[36, p. 46]:

Argument from Position to Know
Major Premise. Source a is in a position to know about

things in a certain subject domain s containing propo-
sition p.

Minor Premise. a asserts that p is true (false).

Trustworthiness Exception. a is not trustworthy, reli-
able or honest.

Conclusion. p is true (false).

One way to implement a computational model of witness
testimony is to use a database to store answers to questions.
In Carneades, conceptually we use a database schema with
the following four tables:

1. A witness table storing information about persons,
such as their name and contact information.

2. A question table stores the information needed
for asking questions of the form: Is it the case
that predicate(subject,object)? For example: Is it
that case that Gertrude is the mother of John,
mother(John,Gertrude)? Readers familiar with the Re-
source Description Framework (RDF) will recognize
such statements as triples [22]. Triples can represent
both binary and unary relations and thus are suffi-
cient for representing all description logic assertions.
Unary relations can be modeled as in this example:
isa(Joe,Person). The question table records the type
of the object of each predicate (e.g. symbol, number,
string, Boolean) and the cardinality of the predicate
(one or many), along with a text to be used as a tem-
plate for asking questions in natural language.

3. An answer table stores the answers to questions. For
predicates with a cardinality greater than 1, it is also
noted whether all values of the object of the predicate
have been provided by the witness, or only some. If
a witness asserts there are no further values, then this
can be used by an argumentation scheme to construct
arguments against claims of other values, as will be
discussed in more detail below.

4. Finally, a form table stores a set of forms, where each
form is a sequence of questions. This enables dialogues
to be structured more coherently, by asking related
questions at the same time. For example, when asking
for a person’s name, one could also ask for essential
contact information.

This database is used to construct arguments for propo-
sitions at issue by first matching the proposition at issue to
the questions in the question table. If a question can be
found, we then check whether the question for this issue has
already been asked. The question has been asked if there is
an entry in the answer table for this question. If the witness
was not able to provide any answers, the set of values will



be empty. If the question has not been asked, or the wit-
ness when first answering the question indicated he knew
further answers, the question is asked and the answers are
both stored in the answer table and used to construct the
arguments returned by the argumentation scheme. If the
question has been previously asked and the witness had in-
dicated that he had provided all the answers he was able to
provide, arguments are constructed from these answers and
returned, without modifying the answer table. While this
is admittedly a very operational and procedural description
of the process of constructing arguments using this scheme,
rather than a declarative definition of a mathematical func-
tion, it should be remembered that argumentation schemes,
in their role as argument generators, are methods for con-
structing arguments. While some of these methods can be
defined functionally others are more naturally defined in pro-
cedural terms.

If the proposition at issue is p(s,o), the witness has tes-
tified that he had provided all the values of the p property
of s, and o is not one of those values, then an argument is
constructed con the proposition p(s,o) from this testimony.
Such a con argument is reminiscent of predicate completion,
which plays a role in the semantics of negation as failure
(NAF) in logic programming [9], but is different in a few
ways. First, it is restricted in scope to triples with partic-
ular predicates and subjects, whereas predicate completion
as it is typically used in logic programming applies to all
predicates. Second, such arguments are supported by the
testimony of a witness who expressly stated that no further
values exist, whereas predicate completion is based on the
closed-world assumption, that all relevant facts are known
and in the database. In our approach, the closed-world as-
sumption is not made. Finally, con arguments constructed
in this way can be rebutted or undercut by other arguments,
also by testimony of other witnesses. Predicate completion
has nothing comparable.

This model of a scheme for argument from witness tes-
timony provides functionality similar to the way rule-based
systems ask users for information when there are no rules for
deriving some needed fact. But our model is more general as
it can handle possibly conflicting testimony about the same
issue from more than one witness.

Let us illustrate this data model with a few questions from
the German family law example:

predicate type cardinality template
mother symbol one Who is ’s mother?
father symbol one Who is ’s father?
child symbol many Who is a child of ?
needy boolean one Is needy?

Let testimony be the type of a database with the
above tables and argument-from-testimony be a function of
type testimony ⇒ (arguments: set[argument], assumptions:
set[statement], issue: statement)⇒ stream[argument], match-
ing the protocol for argumentation schemes.

To illustrate this model of an scheme for argument from
witness testimony, using our German family law domain, let
testimony1 be a database of type testimony, with a record
of Max’s testimony. Suppose Max has yet to be asked
any questions. We can construct an argument generator
from his testimony as follows. Let argument-from-testimony1
be argument-from-testimony(testimony1). Now, to ask Max

whether Gertrude is his mother, we can evaluate argument-
from-testimony1(G,A,mother(Max,Gertrude)). Assuming he
answers yes, this results in the following argument:

stream(mother(Max,Gertrude) since
[unless not trustworthy(Max)])

In this argument, the major and minor premises of the
scheme for argument from position to know have been left
implicit.6

7. RELATED WORK
Our work builds on and was inspired by previous work

in AI and Law on using argumentation schemes for legal
reasoning [34, 6].

Most prior work on computational models of argumenta-
tion schemes has focused on their role as patterns for clas-
sifying arguments and revealing implicit premises, to sup-
port the process of argument reconstruction. For example,
Aracuaria provides a way to define templates for argumen-
tation schemes and to use these templates to classify argu-
ments and their premises [30]. Recently, an OWL ontology
of many of the second author’s argumentation schemes has
been developed, with the aim of being able to use descrip-
tion logic theorem provers to classify arguments [29]. Others
have focused on the problem of how to model in a compu-
tational argumentation framework the critical questions of
argumentation schemes and investigated how such critical
questions affect the burden of proof when evaluating the ac-
ceptability of statements given a set of arguments [34, 17].

In artificial intelligence, the blackboard architecture for hy-
brid knowledge-based systems, as first implemented in the
Hearsay-II speech understanding system [13], provides a way
for multiple inference engines to work together on solving
a problem. Each inference engine uses its own knowledge
source, modeled in whatever way is appropriate for its par-
ticular reasoning methods. In blackboard systems, the infer-
ence engines collaborate by writing statements to a shared
data structure, called the ‘blackboard’. In Hearsay-II, the
statements represent hypotheses about the utterances be-
ing interpreted. Inference engines use the statements on
the blackboard as input to their reasoning methods, in a
forward-chaining, data-driven way. Whenever sufficient data
is on the blackboard for some reasoning method of an infer-
ence engine to be applicable, the inference engine announces
this to a scheduler. If several inference engines have applica-
ble methods, the scheduler decides in which order to apply
the methods. The inference engines can derive conflicting
conclusions. Hearsay-II provides some way to weigh or or-
der inference engines to resolve these conflicts.

Later blackboard systems, such as Walker’s Expander
legal expert system [35], recorded not only statements
on the blackboard, but also justifications for these state-
ments, what we would now call arguments, using a reason-
maintenance system [11, 10] to manage dependencies be-
tween statements. As the inference engines continue to work
on problems and post further information to the blackboard,
the reason maintenance system would update the status of
the statements on the blackboard, labeling them ‘in’ or ‘out’.
6In Carneades, all arguments are annotated with an iden-
tifier of the scheme used to construct the argument, so it
is not necessary to use pattern matching to try to identify
the scheme used, unlike when using schemes to reconstruct
arguments in natural language texts.



Clearly there are similarities between our approach to hy-
brid reasoning using argumentation schemes and blackboard
systems. The role of inference engines is played by argu-
ment generators. And the acceptable function, of type (ar-
guments: set[argument], assumptions: set[proposition], issue:
proposition) ⇒ Boolean can be viewed as providing reason-
maintenance services. There are however significant differ-
ences. Firstly, argument generators are not problem solvers.
They do not implement problem-solving methods with their
own control strategies. Rather, a set of argument generators
induces a space of sets of arguments which can be searched
using a centralized search strategy. Secondly, whereas black-
board systems forward chain from the statements on the
blackboard, our approach allows the space of arguments to
be searched in a goal-directed way.

As Walker notes, any architecture for integrating hybrid
reasoners requires a formal language for expressing state-
ments which is “powerful enough to express the input to
and output from any of the knowledge sources” [35, p. 76].
Our approach places few restrictions on the language used
for expressing statements in argumentation schemes, requir-
ing only equality and complement operators. The formalism
currently used in Carneades allows some meta-level state-
ments to be expressed. For example, it is possible to state
that some rule is not applicable to some other statement.
This formalism may need to be extended as further argu-
ment generators are added to the system.

The problem of translating between the languages used
by different ‘problem-solving methods’ is the focus of a
recent article by Henry Prakken [26], in which he devel-
ops a model of ‘I/O transformers’ between problem-solvers,
and illustrates this method with transformers for first-order
logic, Bayesian probability theory and two versions of de-
fault logic. We speculate that such I/O transformers can be
reconstructed as argument generators in our framework, but
this needs to be validated in future work.

Some research in the artificial intelligence and law field
has addressed ways of integrating reasoning with rules and
cases [14, 8, 32, 28] and ways to resolves conflicts among
arguments, such as prefering arguments from cases to argu-
ments from rules [14, 8, 32]. Our work aims to generalize
these results by providing an open, extensible architecture
for integrating models of any argumentation scheme.

8. CONCLUSION
Two functions of argumentation schemes can be distin-

guished, as argument patterns useful for reconstructing ar-
guments from natural language texts, and as methods for
generating arguments from argument sources, such as legis-
lation or precedent cases. In many fields, such as the law,
solving problems requires several forms of reasoning to be
integrated. Our thesis is that argumentation schemes, in
their capacity as argument generators, together with an ar-
gumentation framework such as Carneades, can provide the
foundation for an open architecture for integrating multiple
forms of reasoning. We have tested this thesis with models of
several argumentation schemes, for argument from ontolo-
gies, rules, cases and testimonial evidence, together with
an example from German family law, showing how these
schemes can be used together to argue about the issues of a
case.

In this architecture, there is a division of responsibility be-
tween the schemes and the argumentation framework. The

schemes define a search space of argument sets or graphs.
The argumentation framework is used to evaluate the ac-
ceptability of arguments or statements in each state of the
search space. A party can use a system which implements
this architecture as a tool for constructing arguments in sup-
port of or opposing some position by heuristically searching
the space for a set of arguments in which the position is
acceptable or not acceptable, respectively. After the argu-
ments found are put forward in the dialogue, the opposing
party can use the same or another implementation of the
architecture, perhaps with other argumentation schemes, to
search for counterarguments.

All the argumentation schemes presented have been imple-
mented in Carneades, as part of the European ESTRELLA
project, and used to build a number of demonstrators in the
legal domain. Carneades is freely available on the Web, as
Open Source software.

The demonstrators of the ESTRELLA project are pro-
totypes of expert systems for helping citizens to apply leg-
islation in order to assess their legal rights and obligations.
Most deployed legal expert systems are currently built using
rule-based systems technology from the 1980s. While such
systems have proven their usefulness for supporting the pro-
cessing of complex claims in public administration as well
as the private sector, for example in the insurance industry,
they are based on the simplifying assumption that the rel-
evant laws and regulations can be adequately modeled as a
logical theory. Claims assessment is viewed as deduction, in
which a theory is applied to the facts of the case to deduce
legal consequences. Lawyers have long understood that in
general legal reasoning cannot be reduced to deduction in
this way. Rather, legal reasoning generally involves the it-
erative construction and comparison of alternative theories
of the facts and the law, interpreting both the evidence and
the relevant legal sources, in an argumentative process. Our
aim in modeling argumentation schemes is to develop tools
which can help people to construct a wide variety of argu-
ments, improving their ability to protect their interests in
dialogues, especially in the legal domain.
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