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Abstract. This paper presents a technique with which instances of argument struc-
tures in the Carneades model can be given a probabilistic semantics by translating
them into Bayesian networks. The propagation of argument applicability and state-
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translation suggests a way to extend Carneades to improve its utility for decision
support in the presence of uncertainty.
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1. Introduction

The Carneades argument model [9] was developed with the goal of formalizing Walton’s
theory of argumentation structure and evaluation. The acceptability of a proposition at
issue is determined by aggregating pro and con arguments using proof standards. Several
proof standards in the legal domain have been formally modeled, including preponder-
ance of the evidence, clear and convincing evidence and beyond a reasonable doubt [8,9].
A Carneades argument graph is a bipartite, directed, acyclic graph, with statement nodes
and argument nodes. Each statement node represents two literals, an atomic proposition,
P , and its logical complement, ¬P . An argument pro P is an argument con ¬P and vice
versa. The acceptability of a literal P is determined by using proof standards to aggregate
the applicable arguments pro and con P . An argument is applicable only if, recursively,
its premises are acceptable and its negative premises and exceptions are not acceptable.

This paper uses the structural similarities between Carneades argument graphs and
Bayesian networks (BN) to demonstrate how the Carneades method of evaluating argu-
ments using proof standards can be simulated with BNs by translating an argument struc-
ture into a Carneades Bayesian Network (CBN). The translation relies on the Carneades
formalism to define a class of BNs which can be instantiated to an autonomous BN
given an instance of an argument evaluation structure. The simulation gives Carneades
an alternative, potentially useful probabilistic semantics and suggests a way to extend
Carneades, by modeling assumptions as probability distributions over possible statuses
of literals and inferring probability distributions over the acceptability of arguments and



derivability of other literals. The benefit for some applications could be that probabilities
seamlessly interface to established decision-support techniques and allow a qualitative
model of argument to be extended to support quantitative methods for reasoning about
uncertainty.

2. Bayesian Networks

A Bayesian network (BN) is a model of random variables and the conditional probabili-
ties between them based on a directed acyclic graph [17]. BNs allow for a structured rep-
resentation of probabilistic causal relationships by exploiting conditional independence
relations to reduce the number of probabilistic parameters over the full joint distribution,
thereby also reducing the computational complexity of the inference calculation. One can
compute the probability of a certain variable having a certain status given information
about the status of other variables by multiplying the respective Bayesian probabilities.

Definition 1 (Bayesian Network) A Bayesian Network (BN) is an ordered triple
〈V,D,P〉, where V is a set of nodes in the network which correspond to random vari-
ables. D is the set of directed edges between the nodes represented as ordered pairs
(v1, v2) where v1, v2 ∈ V . P is a set of probability functions, each mapping a certain
node and a configuration of its immediate parent nodes onto a probability value. Fur-
ther, the Markov assumption needs to be met, i.e. each random variable needs to be
conditionally independent of its non-descendant variables given its parent variables.

3. The Carneades Model

This section gives an introduction to the Carneades argument model as it has been defined
in previous work in greater detail, e.g. [9,10]. Our point of departure is the concept of an
argument. Put informally, an argument consists of a set of premises which have to hold
in order for the argument to be applicable.

Definition 2 (argument) Let L be a propositional language. An argument is a tuple
〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L are its exceptions and c ∈ L is its
conclusion. For simplicity, c and all members of P and E must be literals, i.e. either
an atomic proposition or a negated atomic proposition. Let p be a literal. If p is c, then
the argument is an argument pro p. If p is the complement of c, then the argument is an
argument con p.

Argumentation takes place in a dialogue, which Carneades divides into states [10].
Each state contains a "momentary instance" of the arguments brought forth.

Definition 3 (argumentation process) An argumentation process is a sequence of
states where each state is a set of arguments. In every chain of arguments, a1, . . . an,
constructable from the arguments in a state by linking the conclusion of an argument to
a premise or exception of another argument, a conclusion of an argument ai may not be
a premise or exception of an argument aj , if j < i. A set of arguments which violates
this condition is said to contain a cycle and a set of arguments which complies with this
condition is called cycle-free.



Arguments are assessed using the concept of an audience, which has certain factual
assumptions and a set of subjective weights it assigns to the arguments presented [2,1].

Definition 4 (audience) An audience is a structure 〈Φ, f〉, where Φ ⊂ L is a consistent
set of literals assumed to be acceptable by the audience and f is a partial function map-
ping arguments to real numbers in the range 0.0 . . . 1.0, representing the relative weights
assumed to be assigned by the audience to the arguments.

The actual evaluation of arguments presented at a given state to an audience takes
place in an evaluation structure. It assigns a proof standard to each statement in the
argument, representing the argumentative threshold for establishing a statement.

Definition 5 (argument evaluation structure) An argument evaluation structure is a
tuple 〈Γ,A, g〉, where Γ is a state in an argumentation process, A is an audience and
g is a total function mapping propositions in L to their applicable proof standards in
the process. A proof standard is a function mapping tuples of the form 〈p, Γ,A〉 to the
Boolean values true and false, where p is a literal in L.

In a given evaluation context, a statement is acceptable if its proof standard has been
met according to the assessment of the audience.

Definition 6 (acceptability) Let S = 〈Γ,A, g〉 be an argument evaluation structure,
where A = 〈Φ, f〉. A literal p is acceptable in S if and only if g(p)(p, Γ,A) is true.

In addition to the acceptability, we further make use of the derivability of literals as
defined in Gordon & Ballnat [11].

Definition 7 (derivability) Let S = 〈Γ,A, g〉 be an argument evaluation structure,
where A = 〈Φ, f〉. A literal p is in S, denoted (Γ, Φ) `f,g p, if and only if

• p ∈ Φ or
• (¬p /∈ Φ and p is acceptable in S)

Otherwise p is out, denoted (Γ, Φ) 0f,g p.

Consequently, an argument is applicable once it has been put forward and each of
its premises has either been assumed to be acceptable or is acceptable. Further, none of
the exceptions of the argument may be acceptable or assumed to be acceptable.

Definition 8 (argument applicability) Let 〈state, audience, standard〉 be an argument
evaluation structure. An argument 〈P,E, c〉 is applicable in this argument evaluation
structure if and only if

• the argument is a member of the arguments of the state,
• every proposition p ∈ P , the premises, is an assumption of the audience or, if nei-

ther p nor p is an assumption, is acceptable in the argument evaluation structure
and

• no proposition p ∈ E, the exceptions, is an assumption of the audience or, if nei-
ther p nor p is an assumption, is acceptable in the argument evaluation structure.



!"#$%"$"&'()*"+'"

,*+"+#*"-.*/"

0"#$,",+'1*2",#**3"

4.'&"!/"

5*)*26*"7$2"8*"$"

&'()*/"

9$&:1;"&*&8*.,"

8*#$)*"1';$11;"

!"%'*,"2'+"7$.*"

$8'<+"4$&:1;"(*,/"

Argument premises 

and exception.!

Arguments pro (+) 

and con (-) with 

weights.!

Conclusion 

statement.!

Figure 1. The arson example argument in the current Carneades visualization method.

For reasons of brevity, this paper only explains one proof standard, namely prepon-
derance of the evidence. It states that a literal or its complement is acceptable depending
on which side has the stronger applicable argument.

Definition 9 (preponderance of the evidence) Let 〈Γ,A, g〉 be an argument evaluation
structure and let p be a literal in L. pe(p, Γ,A) = true if and only if

• there is at least one applicable argument pro p in Γ and
• the maximum weight assigned by the audienceA to the applicable arguments pro

p is greater than the maximum weight of the applicable arguments con p.

Fig. 1 shows an exemplary Carneades argument graph. Imagine an attorney repre-
senting farmer A in a civil proceeding. A has been accused of having set the farm of his
brother B on fire and has been sued for compensation. The evidence speaks against A and
the only element still at issue is the motive with which A had set the fire. The claimant
has the burden of proof and argues (pro-argument, black arrowhead) that A had a mo-
tive (Literal M ) as it has been established that B had stolen a sheep from A some time
ago (Literal S) and revenge is a plausible motive for the arson (Literal R). The defense
argument (con-argument, white arrowhead) is that it is less likely that A would commit
the arson as they are members of the same family, hence A would likely be loyal to his
sibling (Literal L). This argument would be applicable unless the claimant could show
that A is not a "family person", i.e. someone who cares about family ties (Literal ¬F ,
exception shown as dashed line). Under the preponderance of evidence standard, one
assigns greater weight to the pro-argument (0.6 vs. 0.4, see fig. 1), because one thinks
the notion of revenge weighs heavier with the jury than loyalty among siblings. For the
pleading to the jury, consequently, one sketches out the (admittedly simplified) argument
graph shown in fig. 1. While one could expand each leaf node literal into a subtree of
arguments or add additional arguments relating, for example, family loyalty and revenge,
we leave the graph at this level of complexity for purposes of the illustration.

4. The Translation

The BN produced by our translation is not functionally equivalent to a Carneades argu-
ment structure in that it can be arbitrarily modified and still reflect a valid Carneades
argument graph. Instead, the translation produces a BN conditioned on a specific con-
figuration of an argument evaluation structure (see def. 5) with a set of probability func-



tions emulating the status propagation of the just presented Carneades formalism. We
thereby show how to simulate Carneades using a homomorphic BN. We do not claim that
Carneades argument evaluation structures and BNs are isomorphic, which would allow,
in the reverse direction, arbitrary BNs to be simulated using Carneades.

We justify the translation by explanation and by presenting an example argument
graph and its corresponding BN. We do not have a full formal proof of functional cor-
rectness of the translation yet. We expect to be able to publish it in the near future.

We begin by introducing random variables for literals and arguments. Statement
variables represent the in- or out-status of a literal given its proof standard and connecting
arguments. Recall that in a Carneades graph structure, p and ¬p are treated as a unit.
We do not capture this unity in the BN translation. Instead, for each literal p in the
argument structure, the BN contains two variables, one corresponding to p and the other
one to ¬p. An argument depending on the literal as a premise or exception can then
be linked to the respective variables as needed. This also means that every argument
variable always connects to two statement variables, namely to one for its conclusion as
a pro argument and to another one for its negated conclusion as a con argument. Since
statement and argument variables represent two different kinds of random variables, our
BN is effectively bipartite. This is distinct from Vreeswijk’s interpretation of an existing
BN as containing argument subtrees [20] as well as from Muecke & Stranieri [15], who
manually translate generic argument graphs into BNs.

Definition 10 (statement and argument variables) A statement variable is a random
variable representing the probability of a given literal having a certain derivability sta-
tus. It can take the values {in, out}. An argument variable is a random variable rep-
resenting the probability of a certain argument being applicable. It can take the values
{applicable, not applicable}.

We can now translate an argument evaluation structure into a BN structure of vari-
ables, edges and probability functions. We commence by translating literals and argu-
ments into their respective kind of variables. Notice that we need to create a statement
variable not only for every literal used in the state, but also for its complement.

Definition 11 (variable translation) If S = 〈Γ,A, g〉 is an argumentation evaluation
structure, then VS = L∪A is the set of statement and argument variables corresponding
to the literals in Γ. Let literals(Γ) be a set of literals consisting of both positive and
negated versions of all literals used by arguments in Γ. Let svl be a statement variable
representing literal l and ava be an argument variable representing argument a.

• Literals: L = {svl|l ∈ literals(Γ)}
• Arguments: A = {ava|a ∈ Γ}

We can now connect the variables using directed, labeled edges. We create two out-
going edges for arguments, one for its conclusion and one for its complement.

Definition 12 (edge translation) If S = 〈Γ,A, g〉 is an argumentation evaluation struc-
ture, then DS = DPr ∪ DX ∪ DC is a set of directed, labeled edges connecting the
variables of VS represented as three-element tuples. Let vx ∈ VS be the random variable
associated with statement/argument x.



• Premises: DPr = {(vp, va, premise)|a = 〈P,E, c〉 ∈ Γ, p ∈ P}
• Exceptions: DX = {(ve, va, exception)|a = 〈P,E, c〉 ∈ Γ, e ∈ E}
• Conclusions: DC = {(va, vc, pro)|a = 〈P,E, c〉 ∈ Γ}
∪ {(na, n¬c, con)|a = 〈P,E,¬c〉 ∈ Γ}

The propagation functionality is added through the set of probability functions,
which associates with each variable a function that determines the probability of the
given random variable having a certain value conditioned on the values of the immediate
parent variables and, as explained above, the elements of the argument evaluation struc-
ture: assumptions, proof standards and argument weights. For an argument variable, the
parent variables are its premises and exceptions, while the parents of a statement variable
represent arguments pro and con the statement. As we simulate the value propagation
of the Carneades model, all conditional probabilities assigned are either 0 or 1, making
the nodes in the network behave deterministically in accordance with the argument for-
malism. Notice that all information about the adjudication of competing applicable argu-
ments (i.e. proof standards and argument weights) flows into the probability functions.

Definition 13 (probability functions) If S = 〈Γ,A, g〉 is an argument evaluation struc-
ture where A = 〈Φ, f〉, VS = S ∪A consists of a set of statement variables S and a set
of argument variables A, and DS is the set of connecting edges, then PS = Pa ∪ Ps is
a set of probability functions defined as follows:

If a ∈ A is an argument variable and s1, ..., sn are its parent statement variables,
then Pa is the probability function for the variable a in the BN.

Pa(a = applicable|s1, ..., sn) =


1, if for every si it holds that either:

((si, a, premise) ∈ DS and si = in)
or ((si, a, exception) ∈ DS and si = out)

0, otherwise

Pa(a = not applicable|s1, ..., sn) = 1− Pa(a = applicable|s1, ..., sn)

If s ∈ S is a statement variable representing literal l and a1...an are its parent
argument variables, then Ps is the probability function for the variable s:

Ps(s = in|a1, ..., an) =

{
1, if (Γ, Φ) `f,g p

0, if (Γ, Φ) 0f,g p

Ps(s = out|a1, ..., an) = 1− Pa(s = in|a1, ..., an)

Let Pa = {Pa|a ∈ A} and Ps = {Ps|s ∈ S}.

By itself, the translation defines a class of BNs conditioned on an argument evalua-
tion structure. One can instantiate a single autonomous CBN (variables, edges, probabil-
ity functions) given a specific argument evaluation structure.

Definition 14 (Carneades Bayesian network) A Carneades Bayesian Network (CBN)
is an ordered tuple 〈VS , DS ,PS)〉, where VS is a set of statement and argument variables
in the network, DS is a set of directed edges and PS is the set of probability functions
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Figure 2. The example argument as a BN. The dashed box represents a negative literal. Negation is shown as
∼. Unused literals have been omitted. For the propositions of the abbreviated literals, see end of section 3.

conditioned on the information in a given argument evaluation structure S. Further, the
class of CBNs shall be defined as:

C = {〈VS , DS ,PS)〉|S is a Carneades argument evaluation structure}

5. An Example Translation

To give an illustration of a full reduction, we show our Carneades argument in the arson
example as a BN in fig. 2 with the conditional probability tables attached to each variable.
We begin by assuming that all premises of the two arguments hold, i.e. S, R and L are ac-
cepted and F is rejected. Given this configuration, the network behaves like a Carneades
argument graph and will conclude that the presence of a motive will be deemed accept-
able by the audience with a probability of 1 (i.e. P (M = in) = 1), because although
both arguments are applicable, the pro-argument trumps the con-argument by virtue of it
having a higher weight. This is an example of the patterns of 0s and 1s in the probability
tables being contingent on the proof standard of each statement as well as the assump-
tions and weights attributed to the audience. If one were to change the weights so that the
con-argument outweighed the pro-argument, the probability tables for A-pro and A-con
in the depicted BN would change according to the translation.

6. The Characteristics and Utility of Probabilistic Semantics

6.1. Extension for Probability Distributions over Leaf Node Literals

In the example, we have modeled the assumptions about the audience in such a way
that both arguments are applicable. The final binary determination of whether it will



conclude that there is a motive is a matter of the proof standard and therefore about the
weights which the audience is believed to assign to the arguments. However, the much
more intuitive approach is to speak of the audience being more or less likely to accept
or reject a certain statement, thereby introducing a notion of uncertainty into the concept
of assumptions. Here, we can benefit from probabilistic semantics and extend the CBN
model by introducing probability distributions over the in- and out-status of leaf literals
(i.e. literals without arguments for or against them).

Up to now, we have modeled the literals l and ¬l as distinct nodes in the network.
Hence, such an extension conflicts with the consistency requirement for literals assumed
by the audience. If both l and ¬l are in with a certain nonzero probability each, the
product of these probabilities is the probability of the assumptions being inconsistent
with regard to that pair of literals. In order to remedy this issue, our extension needs to
enforce the exlusiveness of the in-status. We achieve this by connecting positive/negated
literal leaf pairs to a new common parent leaf variable with three possible values, which
we shall refer to as a probabilistic assumption variable. If l is accepted, it is in and ¬p is
out. l being rejected is the inverse case. If l is questioned, both l and ¬l are out.

Definition 15 (probabilistic assumption variable) A probabilistic assumption vari-
able is a random variable taking the possible values M = {accepted, rejected,
questioned} representing the probability of a certain literal being accepted, rejected or
left undecided by the audience.

Definition 16 (enhanced probability functions for leaf literals) Assume c = 〈VS , DS ,
PS〉 is a CBN. Let Pl ∈ PS be the probability function for a literal l’s statement variable
vl in VS and let L be the set of positive leaf literals in the argument. Let B be a set con-
taining a probabilistic assumption variable bl for each literal l in L. Let Pass be set of a
probability functions Pass(bl = m) determining the probability with which bl ∈ B has
status m ∈ M such that

∑
m∈M Pass(bl = m) = 1 for all bl ∈ B. Then an enhanced

CBN c′ = 〈N ′
S , D′

S ,P ′S〉 is constructed from the following components:

V ′
S = VS ∪B

D′
S = DS ∪ {(bl, vl, ass), (bl, v¬l, ass)|bl ∈ B; vl, v¬l ∈ V ′

S}

P ′l (vl = in|bl) =

{
1, if bl = accepted
0, otherwise

P ′l (vl = out|bl) = 1− P ′l (vl = in|bl)

P ′¬l(v¬l = in|bl) =

{
1, if bl = rejected
0, otherwise

P ′¬l(v¬l = out|bl) = 1− P ′¬l(v¬l = in|bl)

Pold = {Pl, P¬l|l ∈ L} ; P ′l = {P ′l |l ∈ L} ; P ′¬l = {P ′¬l|¬l ∈ L}

P ′S = (PS\Pold) ∪ P ′l ∪ P ′¬l ∪ Pass
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Figure 3. The example BN with extended literals and some possible probability distribution over assumed
statements. Literals not used as premises or exceptions have been omitted.

This functionality connects Carneades to tasks of practical reasoning and planning.
In the example, the claimant has the burden of proof and must show that M = in. The
defendant’s attorney does not need to establish ¬M = in, but only that M = out.
She cannot tell for certain that the jury is going to accept a certain statement, but she
can formulate her intuition about whether it is more likely to accept than to reject it.
We extend the example BN and assign some probability distribution to the assumptions
as shown in fig. 3. The diagram shows a distribution where the audience is likely to
accept literals S (stolen sheep), L (loyalty among siblings) and F (A cares about family
ties), but only moderately likely to accept R (revenge as a plausible motive), because
burning the farm as revenge for a stolen sheep appears to be disproportionate. One can
calculate the probability of successfully arguing that a motive has not been established:
P (M = out) = 0.52. Modifying the assumption distributions or argument weights and
recalculating the probabilities will yield insight into how best to persuade the jury and
improve the chances. For example, the attorney can try to further weaken the jury’s belief
in revenge as a plausible motive (decrease of the probability the assumption for R to,
for example, P (Assumption for R = acc.) = 0.4), thereby decreasing the probability of
A-pro being applicable and achieving an overall success chance of P (M = out) = 0.68.
Alternatively, she can try to convince the audience that A-con should weigh more heavily
than A-pro (alteration of the conditional probability tables of M and ¬M so that A-con
wins over A-pro if both are applicable). This would increase her probability of success to
P (M = out) = 0.79. Based on the calculations, it appears to be strategically better to
plead for the family loyalty argument to have a higher weight than the revenge argument
versus arguing that revenge is not a plausible motive.

We can see that this probabilistic form of Carneades allows some argumentation
strategy decisions like the ones illustrated in the example to be cast into a modification of
either the argument weights (thereby altering the probability functions) or the probabilis-



tic assumption variables. After the modification, the network needs to be reinstantiated
because of the change in the probability tables. The new BN can then be used to calcu-
late the probability of successfully establishing the conclusion, which will improve, stay
the same or worsen, thereby spreading open a space of possible actions, each associated
with a certain payoff in argumentative certainty. We plan to pursue this possible utility of
the BN translation in future work, specifically with regard to goal selection (see Gordon
& Ballnat [11]) and dialogue games. Concerning the latter, our extension is similar to
Riveret et al. [18], where probabilities were attached to premises of arguments to reflect
the chance that a judge would accept the premise.

6.2. Probabilities, Proof Standards and Weights

In previous work on Carneades [10], it was argued that proof standards should not be
modeled probabilistically because of (1) the difficulty in quantifying the necessary prob-
abilities in argumentation scenarios, and (2) because multiple arguments can not typi-
cally be assumed to be independent of each other. The latter makes it difficult to gener-
alize (conditional) independence between literals as one does not know whether they se-
mantically connect to each other in a way not represented in the argument graph. In this
paper, we use BNs to model the probability of a literal being accepted by the audience
or satisfying its proof standard, i.e. the probability of the literal being in our out, not the
probability of the it being true given the evidence. The probability of a proof standard
being satisfied does not depend on an assumption that the arguments are independent.

Our model distinguishes between the strength of an argument by virtue of its weight
in the eyes of the audience and the strength of an argument by virtue of its premises be-
ing highly likely to be fulfilled (i.e. the argument being applicable). The former is taken
into account by the conditional probability tables which simulate the Carneades model.
The latter is determined via propagating the probability distributions of the assumptions
across the BN. Eventually, both quantities are synthesized into a single probability value
representing how likely it is that the conclusion is successfully established through the
given argumentation. A strong-weighted argument with unlikely premises may have less
of an impact on the probability of success than a weaker-weighted argument which is ap-
plicable with a high probability. The new probabilistic semantics hence add an additional
functional dimension to argument weights and proof standards as they allow the proba-
bilities to reveal and quantify the tradeoffs involved in assessing the value of a certain
argument a given context.

7. Computational Complexity

Despite the benefits of BNs over full joint distributions, exact inference of probabilities
from a BN is NP-hard [5]. To remedy this, well-performing iterative sampling-based (so-
called Monte-Carlo) approximation methods are commonly used. More efficient meth-
ods may be possible which exploit the structure of Carneades argument graphs. This is
not the focus of this paper and we hence leave it for future work. Notice that computa-
tional complexity issues are only relevant when Carneades is extended as described in
Section 6.1. Computational complexity issues are irrelevant for the general conceptual
aspects of a probabilistic interpretation of existing argument models and for the main
result of this paper, i.e. providing Carneades with a probabilistic semantics (section 4).



8. Further Related Work

Williams & Williamson have experimented with inferring argument weights for a model
graph from existing data using BN learning methods [19]. By contrast, our approach
constructs BNs from an existing model graph. Also, our model does not interpret ar-
gument weights in a probabilistic fashion. Freeman’s transferral [8] of Cohen’s concept
of ampliative probability [4] to the Toulmin model is distinct in that it infers argument
strength from the probability of its premises being fulfilled. Our model perceives ar-
gument strength as the weight assigned to an argument by a subjective audience given
the fulfillment of its premises, the latter of which is computed probabilistically. This is
conceptually similar to distinguishing different notions of argument strength as done by
Krause et al.[14] to produce a confidence measure with regard to a proposition. The argu-
mentation system of Zukerman et al. [21] distinguishes between an argument being nor-
matively strong according to domain knowledge and it being persuasive to an audience
by mapping two separate BNs onto each other. By contrast to our work, the probability
measure of the BN is again per se equated with strength of belief in a goal proposition.

Carofiglio [3] proposes a multi-partite BN version of a Toulmin-like model with
which probability distributions over the beliefs can be calculated. While this approach is
similar to ours with regard to the translation, our translation handles the richer Carneades
model, including proof standards. A quantitative probabilistic representation for belief in
uncertain facts (explored in detail by Kadane & Schum [13]) has been criticized by Par-
sons [16]. He distinguishes different kinds of uncertainty and argues for the greater ade-
quacy of qualitative methods in dealing with problems of uncertainty. We present a prob-
abilistic interpretation of an existing argument model and hence do not take a substantive
position with regard to these issues but intend to address them in future research.

Howard & Matheson [12] have abstracted BNs into influence diagrams, integrating
both probabilistic inferences and decision problems into a graphical model. In influence
diagrams, deterministic nodes are used to represent certain outcomes, similar to our ap-
proach of simulating the deterministic Carneades model through conditional probabili-
ties. Also in the decision-theory context, Druzdzel & Suermondt [7] surveyed methods to
identify random variables in a network relevant to a query given some evidence, thereby
also relying on deterministic nodes. GeNIe & SMILE [6] provide a solid implementation
of graphical decision-theoretic models including functionality for deterministic nodes.

9. Conclusions and Future Work

We have simulated Carneades argument evaluation structures using a specially con-
structed class of BNs and instances thereof. The translation centers around argument-
and statement-specific probability functions which are used to compute conditional prob-
ability tables. The translation into BNs suggests a way to extend the Carneades model
to handle argumentation with uncertain premises, where the premises are assigned a
priori probabilities. Future research will focus on evaluating the utility of the extended
Carneades model for quantitative decision support systems, reducing inference complex-
ity, as well as on the implications for argumentation theory of viewing claims and deci-
sions as having probabilities.
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